98%
921
2 minutes
20
Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFβSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers. This synergy reflects activation of cyclins and cdks by DYRK1A inhibition, accompanied by simultaneous reductions in key cell-cycle inhibitors (CDKN1C and CDKN1A). The latter results from interference with the basal Trithorax- and SMAD-mediated transactivation of CDKN1C and CDKN1A. Notably, combined DYRK1A and TGFβ inhibition allows preservation of beta cell differentiated function. These beneficial effects extend from normal human beta cells and stem cell-derived human beta cells to those from people with type 2 diabetes, and occur both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402958 | PMC |
http://dx.doi.org/10.1016/j.cmet.2018.12.005 | DOI Listing |
Chem Senses
September 2025
Rutgers University Department of Nutritional Sciences. 65 Dudley Road, New Brunswick, NJ 08901, USA.
Recent research has shown that KATP channels in mouse taste bud cells enhance glucose taste signaling by depolarizing the cell when ATP is present. Relatedly, estradiol has been shown to enhance glucose sensing in human pancreatic β cells via closure of KATP channels. Since taste tissue has estradiol receptors, we linked these two observations and tested whether elevated estradiol may also enhance taste sensitivity and liking for glucose in humans.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
High morbidity and mortality associated with human β-coronavirus (CoV) infection highlight the need to determine host responses to infection and develop anti-viral therapies. Gap junction intercellular communication (GJIC), particularly involving Connexin43 (Cx43), is vital for maintaining central nervous system (CNS) homeostasis, and disruption of GJIC is a well-documented pathogenic mechanism among β-coronaviruses. Specifically, murine β-coronavirus, mouse hepatitis virus (MHV-A59) inoculation in the mouse brain causes acute-stage CNS viral spread and chronic neuroinflammatory demyelination while causing pronounced downregulation of Cx43 at the acute stage, reflecting a critical role in CNS pathology.
View Article and Find Full Text PDFLiver Int
October 2025
Division of Gastroenterology and Hepatology, Department of Medicine, The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Northwell Health, Manhasset, New York, USA.
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths, primarily due to late-stage diagnosis. In this multicenter study, our goal is to identify functional biomarkers that stratify the risk of HCC in patients with cirrhosis (CP) for early diagnosis.
Methods: Five thousand and eight serum proteins (Somascan) were analysed in Cohort A (477 CP, including 125 HCC).
J Cereb Blood Flow Metab
September 2025
iInstitut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
Cerebral Amyloid Angiopathy, a common age-related small vessel disease leading to hemorrhagic stroke, shares many characteristics with Alzheimer's disease: toxic amyloid deposits, microvascular alterations and enlarged perivascular spaces (EPVS). Together, PVS enlargement, reduced amyloid-β clearance and further accumulation form a vicious cycle underlying disease progression. Yet, the neuropathological correlates of EPVS, including the associated angioarchitecture, are poorly understood.
View Article and Find Full Text PDFEndocr Connect
September 2025
Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.
View Article and Find Full Text PDF