IL-17A inhibits autophagic activity of HCC cells by inhibiting the degradation of Bcl2.

Biochem Biophys Res Commun

Hepatology Department, Xiyuan Hospital Key Laboratory of Hepatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatocellular carcinoma (HCC) is associated with poor prognosis due to many unknowns about its inflammatory microenvironment. As a pivotal proinflammatory cytokine, IL-17A exerts a protective effect on the survival and function of HCC cells. It is widely accepted that IL-17A plays an important role in regulating autophagy. Bcl2, a key molecule promoting the survival of HCC cells, also plays an indispensable role as an autophagy regulator. The aim of this study was to investigate the role of Bcl2 in IL-17A-regulated autophagy of HCC cells. The results showed that IL-17A not only inhibited autophagic activity, but also increased Bcl2 levels in HCC cells under starvation. Besides, IL-17A could prevent the dissociation of autophagy protein Beclin1 from Bcl2-Beclin1 complex upon starvation. Overexpression of Beclin1 rescued the autophagy deficiency of HCC cells in presence of IL-17A. Moreover, RNAi-induced Bcl2 silencing impaired the function of IL-17A in inhibiting the activation of autophagy, subsequently reducing the viability and migration of HCC cells, while the inhibition of Beclin1 by spautin-1 could reduce autophagic activity to a certain degree, thus restoring the viability and migration of HCC cells. In summary, it was suggested that the inhibition of Bcl2 degradation may be an important mechanism by which IL-17A inhibits autophagy response, subsequently maintaining the survival in HCC cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.12.103DOI Listing

Publication Analysis

Top Keywords

hcc cells
36
autophagic activity
12
hcc
10
cells
9
il-17a
8
il-17a inhibits
8
survival hcc
8
viability migration
8
migration hcc
8
autophagy
7

Similar Publications

RELA Ablation Contributes to Progression of Hepatocellular Carcinoma with TP53 Mutation and is a Potential Therapeutic Target.

Adv Sci (Weinh)

September 2025

China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea

TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.

View Article and Find Full Text PDF

Regulation of angiogenesis and cancer cell proliferation by human vault RNA1-2.

NAR Cancer

September 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.

View Article and Find Full Text PDF

Advances in Tumor Microenvironment and Immunotherapeutic Strategies for Hepatocellular Carcinoma.

Oncol Res

September 2025

Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, largely driven by an immunosuppressive tumor microenvironment (TME) that facilitates tumor growth, immune escape, and resistance to therapy. Although immunotherapy-particularly immune checkpoint inhibitors (ICIs)-has transformed the therapeutic landscape by restoring T cell-mediated anti-tumor responses, their clinical benefit as monotherapy remains suboptimal. This limitation is primarily attributed to immunosuppressive components within the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).

View Article and Find Full Text PDF

Objective: Peptide-encoding roles of lncRNAs are emerging in cancer biology. This study explores the function of the CCAT1-70aa peptide in hepatocellular carcinoma (HCC) and its underlying mechanisms.

Methods: Immunohistochemistry was used to detect CCAT1-70aa expression in HCC and adjacent tissues.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.

View Article and Find Full Text PDF