Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aims: Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer-related deaths worldwide. PRDXs are antioxidant enzymes that play an important role in cell differentiation, proliferation and apoptosis and have diverse functions in malignancy development. However, the mechanism of aberrant overexpression of PRDX6 in CRC remains unclear.

Methods: Boyden chamber assay, flow cytometry and a lentiviral shRNA targeting PRDX6 and transient transfection with pCMV-6-PRDX6 plasmid were used to examine the role of PRDX6 in the proliferation capacity and invasiveness of CRC cells. Immunohistochemistry (IHC) with tissue array containing 40 paraffin- embedded CRC tissue specimens and Western blot assays were used to detect target proteins.

Results: PRDX6 was significantly up-expressed in different comparisons of metastasis of colorectal adenomas in node-positive CRC (P = 0.03). In in vitro HCT-116, PRDX6 silencing markedly suppressed CRC cell migration and invasiveness while also inducing cell cycle arrest as well as the generation of reactive oxygen species (ROS); specific overexpression of PRDX6 had the opposite effect. Mechanistically, the PRDX6 inactivation displayed decreased levels of PRDX6, N-cadherin, β-catenin, Vimentin, Slug, Snail and Twist-1 through the activation of the PI3K/ AKT/p38/p50 pathways, but they were also significantly inhibited by PRDX6 transfectants. There was also increased transcriptional activation of dimethylation of histone H3 lysine 4 (H3K4me3) of PRDX6 promoter via the activation of the PI3K/Akt/NFkB pathways.

Conclusion: Our findings demonstrated that PRDX6 expression plays a characteristic growth-promoting role in CRC metastasis. This study suggests that PRDX6 may serve as a biomarker of node-positive status and may have a role as an important endogenous regulator of cancer cell tumorigenicity in CRC. PRDX6 may also be an effective therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000495934DOI Listing

Publication Analysis

Top Keywords

prdx6
13
migration invasiveness
8
colorectal cancer
8
crc
8
overexpression prdx6
8
expression prdx6
4
prdx6 correlates
4
correlates migration
4
invasiveness colorectal
4
cancer
4

Similar Publications

Background: Despite progress in serum biomarker research, reliable tools for early diagnosis and patient stratification in multiple sclerosis (MS) remain limited. This study uses proteomic profiling in untreated MS patients to identify early disease-associated biomarkers.

Methods: We conducted an unbiased proteomic screen to capture broad serum protein expression profiles in a well-characterized discovery sample: 7 relapsing remitting MS (RRMS), 7 secondary progressive MS (SPMS), 4 with primary progressive MS (PPMS) alongside 6 healthy controls (HC).

View Article and Find Full Text PDF

Nanoparticles Induce Protein Corona Conformational Change to Reshape Intracellular Interactome for Microglial Polarization.

ACS Nano

September 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Nanoparticles bind to proteins in cells selectively and form a protein corona around them. However, the mechanisms of protein conformational changes underlying the interactions between nanoparticles and protein coronas remain poorly understood. In this study, we prepared small molecule self-assembled nanoparticles (Aloin NPs) as a research tool to investigate the allosteric mechanism of protein coronas.

View Article and Find Full Text PDF

IntroductionAdipose-derived mesenchymal stem cells (ADSCs) are promising candidates for regenerative therapies, but their clinical application is limited by cellular aging. This study investigated the effects of hydrogen on ADSC senescence and myogenic differentiation, along with the underlying molecular mechanisms.MethodsADSCs were treated with hydrogen gas.

View Article and Find Full Text PDF

Ferroptosis has emerged as a promising therapeutic target in cancer therapy, with the tumor microenvironment (TME) playing a pivotal role in regulating ferroptosis. Although macrophages contribute to ferroptosis regulation within TME, the underlying mechanisms remain unclear. In this study, we demonstrate that macrophages consistently attenuate GPX4 inhibitor-induced lipid peroxidation and cell death in various tumor cell lines, whereas their resistance to cysteine transport inhibitor-triggered ferroptosis varies across cell types.

View Article and Find Full Text PDF