Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon particles were produced from kraft lignin through carbonization of perfectly spherical, sub-micron beads obtained by aerosol flow. The structure of the resulting carbon particles was elucidated and compared to that derived from commercially available technical lignin powder, which is undefined in geometry. In addition to the smaller diameters of the lignin beads (<1 µm) compared to those of the lignin powder (100 µm), the former displayed a slightly higher structural order as revealed by X-ray diffraction and Raman spectroscopy. With regard to potential application in composite structures, the sub-micron carbon beads were clearly advantageous as a filler of cellulose nanopapers, which displayed better mechanical performance but with limited electrical conductivity. Compression sensing was achieved for this nanocomposite system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316020PMC
http://dx.doi.org/10.3390/nano8121055DOI Listing

Publication Analysis

Top Keywords

carbon particles
12
electrically-conductive sub-micron
4
sub-micron carbon
4
lignin
4
particles lignin
4
lignin elucidation
4
elucidation nanostructure
4
nanostructure filler
4
filler cellulose
4
cellulose nanopapers
4

Similar Publications

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

Carbon particle aggregation for enhanced flow capacitive deionization.

Chem Commun (Camb)

September 2025

The Institute of Technological Sciences, MOE Key Laboratory of Hydraulic Machinery Transients, Wuhan University, Wuhan 430072, China.

Flow electrode capacitive deionization is governed by particle dynamics, which are strongly influenced by surface properties and flow conditions. This study shows that carbon particles with lower surface charge aggregate more rapidly into larger clusters, significantly enhancing desalination rates and achieving current efficiencies above 90%, offering guidance for advancing capacitive deionization systems.

View Article and Find Full Text PDF

Background: Integrated mode proton imaging is a clinically accessible method for proton radiographs (pRads), but its spatial resolution is limited by multiple Coulomb scattering (MCS). As the amplitude of MCS decreases with increasing particle charge, heavier ions such as carbon ions produce radiographs with better resolution (cRads). Improving image resolution of pRads may thus be achieved by transferring individual proton pencil beam images to the equivalent carbon ion data using a trained image translation network.

View Article and Find Full Text PDF

Aim: To evaluate the outcomes of combining carbon ion radiotherapy boost (CIRTb) with photons (Ph) or protons (PT) for locally advanced salivary gland and sinonasal cancers (SGCs and SNCs).

Materials And Methods: Sixty-nine patients with SGCs and SNCs received CIRTb to high-risk CTV and Ph or PT to low-risk CTV (LR-CTV) from October 2014 to September 2022. Two-year local relapse-free survival (LRFS) was analyzed with Kaplan-Meier.

View Article and Find Full Text PDF

Carbon ion combined photon radiotherapy induces ferroptosis via NCOA4-mediated ferritinophagy in glioblastoma.

Redox Biol

September 2025

Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321,

Glioblastoma (GBM), the most prevalent and lethal primary malignancy of the central nervous system, remains refractory to conventional photon radiotherapy due to inherent limitations in dose distribution. Although carbon ion radiotherapy offers distinct advantages, including its characteristic Bragg peak deposition and superior relative biological effectiveness, its clinical application is constrained by high costs and increased toxicity. This study explores the radiobiological interactions underlying a mixed carbon ion-photon irradiation regimen, a promising strategy in advanced particle therapy.

View Article and Find Full Text PDF