A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human immunodeficiency virus (HIV), which isa worldwide public health issue, is commonly associated with cardiovascular disorders (CVDs) and rheumatoid arthritis (RA). A smart nanosensor was developed for the detection of HIV and its related diseases (CVDs and RA) using graphene-based field-effect transistors (FETs). In this study, amine-functionalized graphene (afG) was conjugated with antibodies [anti-p24 for HIV, anti-cardiac troponin 1 (anti-cTn1) for CVDs, and anti-cyclic citrullinated peptide (anti-CCP) for RA] to detect various biomarkers. The antibodies were covalently conjugated to afG via carbodiimide activation. The bioconjugate (graphene-antibody) was characterized by various biophysical techniques such as UV-Vis, Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The electrochemical performance of the sensor was evaluated with respect to changes in the resistance of the electrode surface due to the interaction of the antigen with its specific antibody. The developed sensor was highly sensitive and showed a linear response to p24, cTn1, and, CCP from 1 fg/mL to 1 μg/mL. The limit of detection (LOD) was 100 fg/mL for p24 and 10 fg/mL for cTn1 and CCP under standard optimized conditions. The graphene-based smart nanodevice demonstrated excellent performance; thus, it could be used for the on-site detection of HIV, CVD, and RA biomarkers in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.11.041DOI Listing

Publication Analysis

Top Keywords

smart nanosensor
8
human immunodeficiency
8
immunodeficiency virus
8
associated cardiovascular
8
detection hiv
8
ctn1 ccp
8
detection
4
nanosensor detection
4
detection human
4
virus associated
4

Similar Publications