98%
921
2 minutes
20
A Na-smectite clay mineral (Na-Mt) was exchanged with two concentrations of benzyldimethyltetradecyl ammonium chloride cationic surfactant up to one time the cation exchange capacity. Nonionic organoclay was prepared with polyoxyethylene (20) oleyl ether (Brij-O20) nonionic surfactant at one concentration. The resulting organoclays displayed lateral layer organization of the surfactants within their interlayer space.. The adsorption properties of these organoclays and the starting raw clay mineral were evaluated for three extensively used antibiotic pharmaceutical products: the amoxicillin (AMX), the sulfamethoxazole (SMX), and the trimethoprim (TRI), recognized as recalcitrant compounds to conventional water treatments and to display a complex behavior for different pH and temperature experimental conditions. Besides showing short half-life time with possible degradation by UV radiation, these antibiotics associated with mineral phases cause serious environmental issues of which the toxic effect can be exacerbated in the presence of other chemical compounds. From the set of data obtained by complementary techniques: UV and Fourier transform infrared spectroscopy, high-performance liquid chromatography coupled with mass spectrometry, and X-ray diffraction, it appears that the nonionic organoclay shows its versatility for the adsorption of individual molecules as well as a pool of antibiotics. The mixing of the three antibiotics showing different electric charged species (cations, anions, and zwitterions) mimics the natural context drives to a deep modification of the adsorption behavior onto the different materials that can act as possible carrier mineral phases in aquatic environment. These competition effects can be measured through the significant decrease of the Freundlich constants for AMX in the presence of other molecules (or electrolytes), whereas TRI and SMX, by their possible association, create a synergistic effect that favors their adsorption on the whole layered materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289540 | PMC |
http://dx.doi.org/10.1021/acsomega.8b02049 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA. Electronic address:
Sepiolite (SP) is a naturally occurring sedimentary silicate clay mineral known for its unique structure, high surface area, and rich surface chemistry, particularly silanol groups (Si-OH), which facilitate strong interfacial interactions in polymer matrices. Its ability to act as a nanofiller has gained attention in the development of advanced biopolymer nanocomposites, especially for food packaging applications where material performance, sustainability, and safety are critical. SP enhances the thermal stability, barrier properties, and mechanical strength of starch and other biopolymer matrices, key factors in extending shelf life.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China.
Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria, BP 901, HammamLif, Tunisia.
Corrosion of mild steel in marine environments poses a major challenge for industrial sustainability. This study aims to develop an eco-friendly corrosion protection approach by combining phenolic extracts (PE) from extremophile plants with Zn₂-Al-layered double hydroxides (LDH) to form hybrid inhibitors for S235JR steel in artificial seawater (3.5% NaCl).
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Department of Dentistry, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.
Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.
Biomater Adv
August 2025
School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China. Electronic address:
Hemorrhagic control remains a serious concern in emergency medicine and combat trauma management, where achieving rapid hemostasis significantly impacts patient survival outcomes. While conventional interventions including direct manual compression and tourniquet application demonstrate clinical efficacy in routine scenarios, their limitations become apparent when managing catastrophic hemorrhage or anatomically complex injuries. Mineral-based hemostatic agents, particularly clay-derived rapid hemostats, have emerged as a promising therapeutic modality that synergizes ancestral wound management practices with contemporary material engineering.
View Article and Find Full Text PDF