98%
921
2 minutes
20
Objective: The transcricothyroid (CT) membrane approach is a good option for office-based vocal fold injection (VFI). However, because the needle tip is invisible during injection using the CT approach, precise localization requires a high level of experience, and mastering this approach involves a steep learning curve. To overcome current limitations, we conceptualized a novel technique: real-time light-guided VFI (RL-VFI), which enables simultaneous VFI under direct visualization of the lighted needle tip. Herein, we aimed to verify the feasibility of RL-VFI in cadaveric canine model, simulating the setting of office-based VFI, as well as to explore its clinical usefulness.
Study Design: Animal study.
Methods: A customized prototype device was developed. It consisted of three parts: light source, controller, and injector. Light source comprised laser diodes of two wavelengths (635 nanometers [nm], red; 532 nm, green). Four types of injector were developed using 40-mm needles of 23- and 25-gauge and optic fibers of 50 and 100 μm. ex vivo canine larynx was prepared for the experiment. Flexible laryngoscopy system was used to examine canine vocal folds.
Results: Various routes from three insertion points (3 mm, 10 mm, and 17 mm from the midline) were validated using the device. Regardless of the injection routes, the location of the needle tip was accurately indicated by light. RL-VFI was feasible under light guidance without difficulties. Moreover, precise and simultaneous re-injection could be performed at the intended point using the device.
Conclusion: We introduced RL-VFI using our customized prototype device in an ex vivo canine larynx, simulating the setting of office-based VFI. Clinical application of RL-VFI will improve safety and precision of CT approach, as well as expand its applications in laryngology.
Level Of Evidence: NA. Laryngoscope, 129:935-942, 2019.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lary.27507 | DOI Listing |
J Biomed Opt
June 2024
Tyndall National Institute, Biophotonics@Tyndall, Cork, Ireland.
Significance: Dynamic phantoms capable of changing optical properties by control are essential for standardizing and calibrating spectroscopy systems such as the pulse oximeter. However, current liquid dynamic phantoms containing human blood have a short shelf life and require complex experimental setups. Some solid dynamic phantoms are influenced by the angular-dependent performance of the liquid crystal display (LCD), some have a low spatial resolution, and some have slow control of optical properties.
View Article and Find Full Text PDFClin Exp Otorhinolaryngol
August 2022
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea.
Objectives: Vocal fold injection (VFI) via the cricothyroid (CT) membrane is used to treat various diseases affecting the vocal folds. The technical challenges of this technique are mainly related to the invisibility of the needle. Real-time light-guided VFI (RL-VFI) was recently developed for injection under simultaneous light guidance in the CT approach.
View Article and Find Full Text PDFAdv Mater
March 2022
CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
The selective accumulation and real-time monitoring of drug release at tumor site are the key bottlenecks to the clinical translation of polyprodrug. Herein, an intracellular self-immolative polyprodrug (PMTO) is exploited, which not only shows the enhanced cellular internalization and selective accumulation in tumor site under the mild hyperthermia triggered by laser irradiation, but also possesses the self-monitoring drug release ability in vivo. The polyprodrug amphiphiles are synthesized by sequential esterification reaction, and hydrophilic poly(ethylene glycol) serves as blocking agent.
View Article and Find Full Text PDFClin Exp Otorhinolaryngol
August 2021
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
Auris Nasus Larynx
February 2021
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam 13620, Republic of Korea. Electronic address: