Severity: Warning
Message: file_get_contents(https://...@fecop@c&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Active nonprecious metal-based hydrogen evolution reaction (HER) electrocatalysts are critical for the clean and sustainable generation of hydrogen. Here, we synthesized multishelled FeCo@FeCoP@C hollow spheres by the carbonization and phosphorization of the FeCo-MIL-88 metal-organic framework. Owing to both composition (FeCo mixed phosphide) and morphology (multishelled morphology) effects, the as-obtained FeCo@FeCoP@C exhibits excellent HER performance with a low overpotential of 65 mV to achieve an HER current density of 10 mA cm and high stability in acidic solution. Density functional theory calculations show that the FeCoP have the optimal hydrogen absorption energy than that of FeP and CoP. The carbon shell prevents the oxidation of the phosphides, and the FeCo core provides better conductivity. Our work provides a new method to synthesize multishelled structure catalysts, which has potential applications in the further hydrogen production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b17612 | DOI Listing |