Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Genetic heart diseases such as arrhythmogenic cardiomyopathy (AC), a common genetic cause of sudden cardiac death, can be modeled using patient-specific induced pluripotent stem cell-derived cardiac myocytes (CMs). However, it is important to culture these cells in a multicellular syncytium with exposure to surrounding matrix cues to create more accurate and robust models of the disease due to the importance of cell-cell and cell-matrix interactions. The engineered heart slice, constructed by seeding CMs on intact decellularized matrix slices, allows molecular and functional studies on an aligned multilayered syncytium of CMs. This study reveals the potential for an improved disease-in-a-dish model of AC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535962 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2018.0272 | DOI Listing |