Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The alignment of nanostructures in materials such as lyotropic liquid crystal (LLC) templated materials has the potential to significantly improve their performances. However, accurately characterising and quantifying the alignment of such fine structures remains very challenging. In situ small angle X-ray scattering (SAXS) and molecular dynamics were employed for the first time to understand the hexagonal LLC alignment process with magnetic nanoparticles under a magnetic field. The enhanced alignment has been illustrated from the distribution of azimuthal intensity in the samples exposed to magnetic field. Molecular dynamics simulations reveal the relationship between the imposed force of the magnetic nanoparticles under magnetic field and the force transferred to the LLC cylinders which leads to the LLC alignment. The combinational study with experimental measurement and computational simulation will enable the development and control of nanostructures in novel materials for various applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316328 | PMC |
http://dx.doi.org/10.3390/membranes8040123 | DOI Listing |