Average electron temperature estimation of streamer discharge in ambient air.

Rev Sci Instrum

Micropropulsion and Nanotechnology Laboratory, The George Washington University, Washington, District of Columbia 20052, USA.

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electron temperature of small streamer plasmas with low ionization degree is difficult to measure using existing diagnostic technologies such as Langmuir probe and laser Thomson scattering. In this report, we introduce a method of average electron temperature estimation based on the electron continuity equation. The equation includes a temporal derivative of electron density as the summation of diffusion current, drift current, and electron gain/loss events. In the considered example, the electron density is measured using the Rayleigh scattering while the currents and the rate coefficients of those events are functions of the electric field, electron collision frequency, and electron temperature. Therefore, once the electric field and collision frequency are either measured or estimated, the only unknown in the equation is the average electron temperature which can be solved. It was estimated that electron temperature in the streamer peaks at about 3.9 eV for the given example.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5027836DOI Listing

Publication Analysis

Top Keywords

electron temperature
24
average electron
12
electron
10
temperature estimation
8
electron density
8
electric field
8
collision frequency
8
temperature
6
estimation streamer
4
streamer discharge
4

Similar Publications

Phase-Controlled Multi-Element Oxide-Sulfide Heterostructure Toward High-Efficiency Electro-Fenton Oxidation.

Small Methods

September 2025

Department of Materials Science and Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan.

Electron Fenton (EF) degradation often suffers from low in situ HO electrosynthesis and Fe regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)O/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis.

View Article and Find Full Text PDF

The theoretical maximum critical temperature (T) for conventional superconductors at ambient pressure remains a fundamental question in condensed matter physics. Through analysis of electron-phonon calculations for over 20,000 metals, we critically examine this question. We find that while hydride metals can exhibit maximum phonon frequencies of more than 5000 K, the crucial logarithmic average frequency rarely exceeds 1800 K.

View Article and Find Full Text PDF

Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).

View Article and Find Full Text PDF

Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.

View Article and Find Full Text PDF

Introduction: This study evaluated the fatigue resistance of two Nickel-titanium (NiTi) engine-driven file systems with identical geometries and different heat treatments tested under static and dynamic conditions in simulated root canals.

Methods: Cyclic fatigue tests were conducted using ProTaper Universal (PTU) and ProTaper Gold (PTG) instruments with a curvature of 35° and a radius of 6 mm in both static and dynamic modes at body temperature using a customized cyclic fatigue testing device. The number of cycles to fracture (NCF) was recorded.

View Article and Find Full Text PDF