98%
921
2 minutes
20
Two-dimensional (2D) transition metal dichalcogenides (TMDs) MX2 (M = Mo, W; X = S, Se, Te) possess unique properties and novel applications in optoelectronics, valleytronics and quantum computation. In this work, we performed first-principles calculations to investigate the electronic, optical and transport properties of the van der Waals (vdW) stacked MX2 heterostructures formed by two individual MX2 monolayers. We found that the so-called Anderson's rule can effectively classify the band structures of heterostructures into three types: straddling, staggered and broken gap. The broken gap is gapless, while the other two types possess direct (straddling, staggered) or indirect (staggered) band gaps. The indirect band gaps are formed by the relatively higher energy level of Te-d orbitals or the interlayer couplings of M or X atoms. For a large part of the formed MX2 heterostructures, the conduction band maximum (CBM) and valence band minimum (VBM) reside in two separate monolayers, thus the electron-hole pairs are spatially separated, which may lead to bound excitons with extended lifetimes. The carrier mobilities, which depend on three competitive factors, i.e. elastic modulus, effective mass and deformation potential constant, show larger values for electrons of MX2 heterostructures compared to their constituent monolayers. Finally, the calculated optical properties reveal strong absorption in the ultraviolet region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp05522j | DOI Listing |
Nanoscale Adv
March 2025
Department of Chemical Engineering and Materials Science, Michigan State University East Lansing MI 48824 USA
Layered two-dimensional (2D) materials exhibit unique properties not found in their individual forms, opening new avenues for material exploration. This study examines MX transition metal dichalcogenides (TMDCs), where M is Mo or W, and X is S, Se or Te. These materials are foundational for the creation of hetero- and homo-bilayers with various stacking configurations.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2024
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.
J Chem Phys
August 2024
Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague, Czech Republic.
We here present the normal dynamics technique, which recasts the Newton's equations of motion in terms of phonon normal modes by exploiting a proper sampling of the reciprocal space. After introducing the theoretical background, we discuss how the reciprocal space sampling enables us to (i) obtain a computational speedup by selecting which and how many wave vectors of the Brillouin zone will be considered and (ii) account for distortions realized across large atomic distances without the use of large simulation cells. We implemented the approach into an open-source code, which we used to present three case studies: in the first one, we elucidate the general strategy for the sampling of the reciprocal space; in the second one, we illustrate the potential of the approach by studying the stabilization effect of temperature in α-uranium; and in the last one, we investigate the characterization of Raman spectra at different temperatures in MoS2/MX2 transition metal dichalcogenide heterostructures.
View Article and Find Full Text PDFNanotechnology
August 2024
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom.
Photoluminescence has widely been used to study excitons in semiconducting transition metal dichalcogenide (MX) monolayers, demonstrating strong light-matter interactions and locked spin and valley degrees of freedom. In heterobilayers composed of overlapping monolayers of two different MX, an interlayer exciton can form, with the hole localised in one layer and the electron in the other. These interlayer excitons are long-lived, field-tunable, and can be trapped by moiré patterns formed at small twist angles between the layers.
View Article and Find Full Text PDFNanoscale Adv
July 2024
Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
Minimizing the contact barriers at the interface, forming between two different two-dimensional metals and semiconductors, is essential for designing high-performance optoelectronic devices. In this work, we design different types of metal-semiconductor heterostructures by combining 2D metallic MX (M = Nb, Hf; X = S, Se) and 2D semiconductor SiH and investigate systematically their electronic properties and contact characteristics using first principles calculations. We find that all the MX/SiH (M = Nb, Ta; X = S, Se) heterostructures are energetically stable, suggesting that they could potentially be synthesized in the future.
View Article and Find Full Text PDF