98%
921
2 minutes
20
Background: Recently, pseudorabies (PR) outbreaks have been reported in a large number of swine herds vaccinated with the Bartha-K61 vaccine in China, the current pseudorabies virus (PRV) belonging to Genotype II is differential genetically from Bartha-K61 vaccine belonging to Genotype I. Furthermore, it has been proved that the Bartha-K61 vaccine cannot provide sufficient protection against the current PRVs in China. Therefore, the accurate and rapid identification of PRVs is essential. The objective of this study is to develop a duplex fluorescence melting curve analysis (FMCA) capable of rapid, simple, high-throughput differentiation of Chinese, European/American and Bartha-K61 vaccine strains of PRV.
Results: Primers 6F/6R and probes P1/P2, combined with three recombinant plasmids p-B (Bartha-K61), p-N (Genotype I), and p-H (Genotype II), were used to establish the Bicolor FMCA. FAM Tm values (probe P1) and HEX (probe P2) channels of p-B were used as reference values. Tm differences (ΔTm) between detected samples and reference plasmid p-B were calculated in each channel. Bartha-K61 vaccine samples had ΔTm values of ±1 °C in both FAM and HEX channels, Genotype I samples had ΔTm values of ±1 °C in the FAM channel and 4.38 ± 1 °C in the HEX channel, and Genotype II samples had ΔTm values of 6.52 ± 1 °C in the FAM channel and 4.38 ± 1 °C in the HEX channel. The minimum detection limit of the duplex FMCA was approximately 1 × 10 copies per reaction for p-B, p-N, and p-H. The duplex FMCA technique was used to detect and different 198 suspected clinical samples, of which 18 (9%) were positive for Genotype II strains and eight (4%) were positive for Bartha-K61 vaccine strains, and the results were compared with sequencing and phylogenetic analyses, which confirmed that the Bicolor FMCA worked correctly for all samples.
Conclusions: In this study, we developed a duplex FMCA of dual-labeled, self-quenched probes that was performed for rapid detection and differentiation of Genotype I, II and Bartha-K61 vaccine strains of PRV. The duplex FMCA was rapid, simple, and high-throughput, and will likely prove useful for molecular epidemiological investigations and pathogen surveillance of PRV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264625 | PMC |
http://dx.doi.org/10.1186/s12917-018-1697-4 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
July 2025
Key Laboratory of Hydatid Disease Control in Tibet, Ministry of Agriculture and Rural Affairs/Key Laboratory of Universities of Tibet Plateau Animal Disease Research, College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, Xizang, China.
Pseudorabies (PR) is an infectious disease caused by the pseudorabies virus (PRV), affecting various domesticated and wild animals. Since pigs are the only natural hosts of PRV, PR poses a serious threat to the pig farming industry. Currently, PR is primarily prevented through vaccination with inactivated vaccines or genetically modified attenuated live vaccines.
View Article and Find Full Text PDFVet Immunol Immunopathol
July 2025
The Pirbright Institute, Ash Road, Woking GU24 0NF, United Kingdom. Electronic address:
Pseudorabies viruses (PrV), the causative agent of Aujeszky's disease, continues to cause economic losses to pig producers across Southeast Asia. PrV is controlled by vaccination with live attenuated vaccines, such as the Bartha K61 strain, which has also shown promise as a viral vector. Despite the success of live attenuated PrV vaccines and their utility to be engineered as vaccine vectors, studies to understand the basis of their immunogenicity are scarce.
View Article and Find Full Text PDFFront Vet Sci
April 2025
Wen's Food Group, Yunfu, China.
Pseudorabies virus (PRV) poses a serious threat to the global swine industry, as PRV infection can lead to reproductive disorders in sows and high mortality in newborn piglets. Although pigs typically exhibit age-related resistance to PRV, with older pigs exhibiting milder symptoms upon infection, the recent isolation of multiple highly pathogenic PRV variants and reports of severe symptoms and even death in older pigs have garnered much attention. The GDWS2 strain isolated in this study exhibits characteristics similar to those of highly pathogenic strains.
View Article and Find Full Text PDFFront Immunol
January 2025
MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
Pseudorabies virus (PRV), causing Aujeszky's disease in swine, has important economic impact on the pig industry in China and even poses a threat to public health. Although this disease has been controlled by vaccination with PRV live attenuated vaccines (LAVs), the potency of PRV LAVs in inducing cellular immunity has not been well characterized. In this study, using PRV Bartha K61 strain (BK61), the most-used PRV LAVs, as a model, we re-examined the cellular immune response elicited by the BK61 in mice and pigs by multicolor flow cytometry.
View Article and Find Full Text PDFViruses
October 2024
Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China.
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea and high mortality in neonatal piglets. Pseudorabies causes acute and often fatal infections in young piglets, respiratory disorders in growing pigs, and reproductive failure in sows. In late 2011, pseudorabies virus (PRV) variants occurred in Bartha-K61-vaccine-immunized swine herds, resulting in economic losses to the global pig industry.
View Article and Find Full Text PDF