Astrocytic clasmatodendrosis in the cerebral cortex of methamphetamine abusers.

Forensic Sci Res

Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Postmortem investigation of methamphetamine (MA) abuse is an important task in forensic pathology. The present study investigated morphological changes in the astrocytes in the parietal cerebral cortex of MA abusers. Glial fibrillary acidic protein immunoreactivity in the cerebral cortex was examined in forensic autopsy cases for MA-detected group and control group. Clasmatodendrotic astrocytes (including those with swollen cell bodies and disintegrating distal processes) were frequently observed in the cerebral cortex of MA abusers. Quantitative analysis using a colour image processor showed a concomitant increase in the astrocyte area and astrocyte-to-vessel area ratio (size and number of astrocytes) in the grey matter in acute MA fatality and other MA-involved cases, although the astrocyte area (size) was also increased in cases of asphyxiation. The total astrocyte area (size) in the white matter was significantly higher in MA fatalities and asphyxia than in the other groups involving MA abusers. Those indices were independent of blood MA level, age, sex, survival or postmortem time. These observations suggest the increasing number and hypertrophic changes of astrocytes in the grey matter in MA abusers can be the outcome of long-term abuse, while disintegrating distal processes may exist only in acute fatal MA intoxication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197099PMC
http://dx.doi.org/10.1080/20961790.2017.1280890DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
16
astrocyte area
12
changes astrocytes
8
cortex abusers
8
disintegrating distal
8
distal processes
8
astrocytes grey
8
grey matter
8
area size
8
abusers
5

Similar Publications

Deep brain stimulation (DBS) is an emerging treatment for otherwise treatment-refractory psychiatric disorders. It can produce remarkable clinical results in expert hands, but has not fared as well in controlled, multisite trials. That difficulty with scaling up arises in part because DBS' mechanisms are poorly understood, meaning that it is difficult to objectively identify patients likely to respond and/or to customize stimulation to match individual patients' needs.

View Article and Find Full Text PDF

Advances in intravital imaging of adult neurogenesis in mice.

Stem Cell Reports

September 2025

Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland. Electronic address:

The lifelong addition of stem-cell-derived neurons into distinct areas of the mammalian brain, such as the olfactory bulb and hippocampal dentate gyrus, provides structural and functional plasticity to neural circuits. To understand the dynamic processes underlying adult neurogenesis, from dividing stem/progenitor cells to integrating neurons, and to probe how new neurons shape brain function, intravital imaging turned out to be a powerful tool. Here, we review recent advances in the field of adult neurogenesis achieved by using in vivo imaging approaches in mice and discuss future directions of imaging-based experiments that will further our understanding of adult neurogenesis.

View Article and Find Full Text PDF

The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.

View Article and Find Full Text PDF

Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.

View Article and Find Full Text PDF

Subthalamic deep brain stimulation (STN-DBS) provides unprecedented spatiotemporal precision for the treatment of Parkinson's disease (PD), allowing for direct real-time state-specific adjustments. Inspired by findings from optogenetic stimulation in mice, we hypothesized that STN-DBS can mimic dopaminergic reinforcement of ongoing movement kinematics during stimulation. To investigate this hypothesis, we delivered DBS bursts during particularly fast and slow movements in 24 patients with PD.

View Article and Find Full Text PDF