A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Thermal Reshaping Dynamics of Gold Nanorods: Influence of Size, Shape, and Local Environment. | LitMetric

Thermal Reshaping Dynamics of Gold Nanorods: Influence of Size, Shape, and Local Environment.

ACS Appl Mater Interfaces

Materials and Manufacturing Directorate , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States.

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The thermal reshaping of gold nanorods in a polymer matrix is an important phenomenon for many potential applications. However, a fundamental understanding of the various mechanisms that govern the nanorod reshaping dynamics is still lacking. Here, we provide evidence for a phenomenological model of the gold nanorod shape transformation based on the measurements and detailed analysis of the time-resolved thermal reshaping for a variety of gold nanorods having different geometries (aspect ratio, volume, diameter) in a cross-linked epoxy matrix at application relevant temperatures (120-220 °C). Our analysis suggests that (a) the nanorod reshaping dynamics consist of two temporal regimes that are governed by different phenomena and (b) the ultimate amount of reshaping at a given temperature depends strongly on the initial particle geometry and the mechanical stiffness of its surroundings. At short times, the shape transformation is dominated by a curvature-induced surface diffusion process, in which the activation energy for diffusion depends on curvature. At long times, however, the surrounding environment plays a key role in slowing the diffusion and stabilizing the nanorod shape. We show that the long-time behavior can be well described using a modified surface diffusion model that takes into account the slowing of atomic diffusivity as a result of external forces arising from mechanical constraints. The ability to tune both the final shape and the reshaping dynamics in nanocomposites opens up new possibilities in tailoring the optical properties of these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b12965DOI Listing

Publication Analysis

Top Keywords

reshaping dynamics
16
thermal reshaping
12
gold nanorods
12
nanorod reshaping
8
nanorod shape
8
shape transformation
8
surface diffusion
8
reshaping
6
shape
5
dynamics
4

Similar Publications