Publications by authors named "Bryan D Anderson"

The thermal reshaping of gold nanorods in a polymer matrix is an important phenomenon for many potential applications. However, a fundamental understanding of the various mechanisms that govern the nanorod reshaping dynamics is still lacking. Here, we provide evidence for a phenomenological model of the gold nanorod shape transformation based on the measurements and detailed analysis of the time-resolved thermal reshaping for a variety of gold nanorods having different geometries (aspect ratio, volume, diameter) in a cross-linked epoxy matrix at application relevant temperatures (120-220 °C).

View Article and Find Full Text PDF

Transforming growth factor-β (TGFβ) is an important driver of tumor growth via intrinsic and extrinsic mechanisms, and is therefore an attractive target for developing cancer therapeutics. Using preclinical models, we characterized the anti-tumor activity of a small molecule inhibitor of TGFβ receptor I (TGFβRI), galunisertib (LY2157299 monohydrate). Galunisertib demonstrated potent and selective inhibition of TGFβRI with corresponding inhibition of downstream signaling via inhibition of SMAD phosphorylation (pSMAD).

View Article and Find Full Text PDF

Ni nanoparticles (NPs) catalyze many chemical reactions, in which they can become contaminated or agglomerate, resulting in poorer performance. We report deposition of silica (SiO) onto Ni NPs from tetraethyl orthysilicate (TEOS) through a reverse microemulsion approach, which is accompanied by an unexpected etching process. Ni NPs with an average initial diameter of 27 nm were embedded in composite SiO-overcoated Ni NPs (SiO-Ni NPs) with an average diameter of 30 nm.

View Article and Find Full Text PDF

Conversion chemistry is a rapidly maturing field, where chemical conversion of template nanoparticles (NPs) into new compositions is often accompanied by morphological changes, such as void formation. The principles and examples of three major classes of conversion chemical reactions are reviewed: the Kirkendall effect for metal NPs, galvanic exchange, and anion exchange, each of which can result in void formation in NPs. These reactions can be used to obtain complex structures that may not be attainable by other methods.

View Article and Find Full Text PDF

p38α mitogen-activated protein kinase (MAPK) is activated in cancer cells in response to environmental factors, oncogenic stress, radiation, and chemotherapy. p38α MAPK phosphorylates a number of substrates, including MAPKAP-K2 (MK2), and regulates the production of cytokines in the tumor microenvironment, such as TNF-α, interleukin-1β (IL-1β), IL-6, and CXCL8 (IL-8). p38α MAPK is highly expressed in human cancers and may play a role in tumor growth, invasion, metastasis, and drug resistance.

View Article and Find Full Text PDF

Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil.

View Article and Find Full Text PDF

Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are expanding the structure-activity relationship (SAR) of quinoline compounds within the dihydropyrrolopyrazole series.
  • Compound 15d, also known as LY2109761, has shown antitumor efficacy combined with good oral bioavailability.
  • The study validates using pharmacokinetic/pharmacodynamic (PK/PD) approaches in vivo as effective for assessing tumor inhibition and potential antitumor efficacy.
View Article and Find Full Text PDF

Herein we report investigations into the p38alpha MAP kinase activity of trisubstituted imidazoles that led to the identification of compounds possessing highly potent in vivo activity. The SAR of a novel series of imidazopyridines is demonstrated as well, resulting in compounds possessing cellular potency and enhanced in vivo activity in the rat collagen-induced arthritis model of chronic inflammation.

View Article and Find Full Text PDF

Novel dihydropyrrolopyrazole-substituted benzimidazoles were synthesized and evaluated in vitro as inhibitors of transforming growth factor-beta type I receptor (TGF-beta RI), TGF-beta RII, and mixed lineage kinase-7 (MLK-7). These compounds were found to be potent TGF-beta RI inhibitors and selective versus TGF-beta RII and MLK-7 kinases. Benzimidazole derivative 8b was active in an in vivo target (TGF-beta RI) inhibition assay.

View Article and Find Full Text PDF

We report the design and discovery of a 2-aminobenzimidazole-based series of potent and highly selective p38alphainhibitors. The lead compound 1 had low-nanomolar activity in both ATP competitive enzyme binding and inhibition of TNFalpha release in macrophages. Compound 18 showed excellent pharmacokinetics properties and oral activity in the rat collagen induced arthritis model compared with other p38 reference compounds.

View Article and Find Full Text PDF

Structure-based design approach was successfully used to guide the evolution of imidazopyridine scaffold yielding new structural class of highly selective inhibitors of cyclin dependent kinases that were able to form a new interaction with an identified residue of the protein, Lys89. Compounds from this series have shown no detectable effect when tested against a representative set of other serine/threonine kinases such as GSK3beta, CAMKII, PKA, PKC-alpha,beta,epsilon,gamma. Compound 2i inhibits proliferation in HCT 116 cells in tissue culture.

View Article and Find Full Text PDF

Many 3-aryl-4-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)maleimides exhibit potent GSK3 inhibitory activity (<100 nM IC(50)), although few show significant selectivity (>100x) versus CDK2, CDK4, or PKCbetaII. However, combining 3-(imidazo[1,2-a]pyridin-3-yl), 3-(pyrazolo[1,5-a]pyridin-3-yl) or aza-analogs with a 4-(2-acyl-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)) group on the maleimide resulted in very potent inhibitors of GSK3 (160 to >10,000-fold selectivity versus CDK2/4 and PKCbetaII. These compounds also inhibited tau phosphorylation in cells and were effective in lowering plasma glucose in a rat model of type 2 diabetes (ZDF rat).

View Article and Find Full Text PDF

We have identified a novel structural class of protein serine/threonine kinase inhibitors comprised of an aminoimidazo[1,2-a]pyridine nucleus. Compounds from this family are shown to potently inhibit cyclin-dependent kinases by competing with ATP for binding to a catalytic subunit of the protein. Structure-based design approach was used to direct this chemical scaffold toward generating potent and selective CDK2 inhibitors.

View Article and Find Full Text PDF

A novel series of 7-amino 4-(2-pyridin-2-yl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)-quinolines was synthesized and their TbetaR-1 inhibitory, p38 MAPK inhibitory, and TbetaR-1-dependent cellular activity were evaluated. Compound 5a was found to be a highly potent in the enzyme assay and TbetaR-1-dependent cellular assays. In addition, dimer (4g), with a urea linker, shows a similar enzyme and cellular activity despite a bulky substitution.

View Article and Find Full Text PDF

We have expanded our previously reported series of pyrazole-based inhibitors of the TGF-beta type I receptor kinase domain (TbetaR-I) to now include new 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole analogues. Limited examination of the SAR of this new series in both enzyme and cell based in vitro assays has revealed selectivity differences with respect to p38 MAP kinase (p38 MAPK) depending on the nature of the 'warhead' group on the dihydropyrrolopyrazole ring. As with our original pyrazole series, phenyl substituents tended to show greater selectivity against p38 MAPK than those comprised of the quinoline-4-yl moiety.

View Article and Find Full Text PDF

The protein kinase family represents an enormous opportunity for drug development. However, the current limitation in structural diversity of kinase inhibitors has complicated efforts to identify effective treatments of diseases that involve protein kinase signaling pathways. We have identified a new structural class of protein serine/threonine kinase inhibitors comprising an aminoimidazo[1,2-a]pyridine nucleus.

View Article and Find Full Text PDF

Pyrazole-based inhibitors of the transforming growth factor-beta type I receptor kinase domain (TbetaR-I) are described. Examination of the SAR in both enzyme- and cell-based in vitro assays resulted in the emergence of two subseries featuring differing selectivity versus p38 MAP kinase. A common binding mode at the active site has been established by successful cocrystallization and X-ray analysis of potent inhibitors with the TbetaR-I receptor kinase domain.

View Article and Find Full Text PDF

The synthesis and CDK inhibitory properties of a series of indolo[6,7-a]pyrrolo[3,4-c]carbazoles is reported. In addition to their potent CDK activity, the compounds display antiproliferative activity against two human cancer cell lines. These inhibitors also effect strong G1 arrest in these cell lines and inhibit Rb phosphorylation at Ser780 consistent with inhibition of cyclin D1/CDK4.

View Article and Find Full Text PDF

Novel substituted indolocarbazoles were synthesized, and their kinase inhibitory capability was evaluated in vitro. 6-Substituted indolocarbazoles 4 were found to be potent and selective D1/CDK4 inhibitors. 4d and 4h exhibited potent and ATP-competitive D1/CDK4 activities with IC50 values of 76 and 42 nM, respectively.

View Article and Find Full Text PDF