98%
921
2 minutes
20
With the increase in popularity of 3D printing, an important question arises as to the equivalence between devices manufactured by standard methods vs. those presenting with identical bulk specifications, but manufactured via fused deposition modeling (FDM) printing. Using thermal imaging in conjunction with electron and atomic force microscopy, we demonstrate that large thermal gradients, whose distribution is difficult to predict, are associated with FDM printing and result in incomplete fusion and sharkskin of the printing filament. Even though these features are micro or submicron scale, and hence may not interfere with the intended function of the device, they can have a profound influence if the device comes in contact with living tissue. Dental pulp stem cells were cultured on substrates of identical dimensions, which were either printed or molded from the same PLA stock material. The cultures exhibited significant differences in plating efficiency, migration trajectory, and morphology at early times stemming from attempts by the cells to minimize cytoplasm deformation as they attempt to adhere on the printed surfaces. Even though biomineralization without dexamethasone induction was observed in all cultures at later times, different gene expression patterns were observed on the two surfaces. (Osteogenic markers were upregulated on molded substrates, while odontogenic markers were upregulated on the FDM printed surfaces.) Our results clearly indicate that the method of manufacturing is an important consideration in comparing devices, which come in contact with living tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm01797b | DOI Listing |
Sensors (Basel)
August 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland.
The integration of 3D printing into the development of potentiometric sensors has revolutionized sensor fabrication by enabling customizable, low-cost, and rapid prototyping of analytical devices. Techniques like fused deposition modeling (FDM) and stereolithography (SLA) allow researchers to produce different sensor parts, such as electrode housings, solid contacts, reference electrodes, and even microfluidic systems. This review explains the basic principles of potentiometric sensors and shows how 3D printing helps solve problems faced in traditional sensor manufacturing.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Department of Orthodontics, Medical University of Warsaw, 02-091 Warsaw, Poland.
Mouthguards are recommended for all sports that may cause injuries to the head and oral cavity. Custom mouthguards, made conventionally in the thermoforming process from ethylene vinyl acetate (EVA), face challenges with thinning at the incisor area during the process. In contrast, additive manufacturing (AM) processes enable the precise reproduction of the dimensions specified in a computer-aided design (CAD) model.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland.
This study explores the feasibility of using 3D printing technology to fabricate reference materials for validating compressive strength measurements in construction laboratories. Polylactic acid (PLA) and polyethylene terephthalate glycol-modified (PETG) were selected due to their widespread availability and use in fused deposition modeling (FDM). A series of cubic samples with varying infill levels and dimensions were printed and tested to evaluate the influence of infill density, temperature, and storage time on compressive strength.
View Article and Find Full Text PDFBiomolecules
July 2025
School of Material Science and Engineering, Xihua University, Chengdu 610039, China.
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a novel extrusion foaming technology that integrates fused deposition modeling (FDM) 3D printing with supercritical carbon dioxide (SC-CO) microcellular foaming technology. The influence of the 3D-printed structure on the microcellular morphology of the oriented multi-stage microporous scaffold was investigated and optimized.
View Article and Find Full Text PDFCurr Drug Discov Technol
August 2025
Preclinical and Clinical Trials, Techinvention Lifecare Private Limited, Mumbai, India.
Introduction: Pharmaceutical 3D printing has become a revolutionary technique that is revolutionizing drug research, personalized treatment, and medication delivery methods. This article examines how accurate dosing, complicated drug delivery methods, and personalized drug formulations are made possible by 3D printing, which helps the pharmaceutical sector overcome major obstacles. 3D printing opens the door to more efficient and patient-specific treatments by personalizing therapies and accelerating the development process.
View Article and Find Full Text PDF