Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High- and low-density lipoproteins (HDL and LDL) are attractive targets for biomarker discovery. However, ultracentrifugation (UC), the current methodology of choice for isolating HDL and LDL, is tedious, requires large sample volume, results in sample loss, and does not readily provide information on particle size. In this work, human plasma HDL and LDL are separated and collected using semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) and UC. The SP-AF4 and UC separation conditions, sample throughput, and liquid chromatography/mass spectrometry (LC/MS) lipidomic results are compared. Over 600 μg of total proteins is recovered in a single SP-AF4 run, and Western blot results confirm apoA1 pure and apoB100 pure fractions, consistent with HDL and LDL, respectively. The SP-AF4 separation requires ~ 60 min per sample, thus providing a marked improvement over UC which can span hours to days. Lipidome analysis of SP-AF4-prepared HDL and LDL fractions is compared to UC-prepared HDL and LDL samples. Over 270 lipids in positive MS mode and over 140 lipids in negative MS mode are identified by both sample preparation techniques with over 98% overlap between the lipidome. Additionally, lipoprotein size distributions are determined using analytical scale AF4 coupled with multiangle light scattering (MALS) and dynamic light scattering (DLS) detectors. These developments position SP-AF4 as a sample preparation method of choice for lipoprotein biomarker characterization and identification. Graphical abstract ᅟ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451313PMC
http://dx.doi.org/10.1007/s00216-018-1499-3DOI Listing

Publication Analysis

Top Keywords

hdl ldl
24
asymmetrical flow
8
flow field-flow
8
field-flow fractionation
8
human plasma
8
sp-af4 separation
8
sample preparation
8
light scattering
8
hdl
6
ldl
6

Similar Publications

Risk factors for coronary in-stent restenosis in Moroccan patients: a retrospective case-control study.

Cell Mol Biol (Noisy-le-grand)

September 2025

Medical School, Laboratory of Genetics and Molecular Pathology, University Hassan II, Casablanca, Morocco.

In-stent restenosis remains a significant challenge in interventional cardiology despite technological advancements. This retrospective case-control study conducted at the University Hospital Center Ibn Rochd in Casablanca (2020-2023) examined risk factors associated with coronary in-stent restenosis in 68 patients equally distributed between restenosis and no-restenosis groups. Diabetes emerged as a powerful predictor of restenosis (RR=4.

View Article and Find Full Text PDF

Dyslipidemia is considered a crucial risk factor for high risk of atherosclerosis and cardiovascular diseases. Cumin and coriander seeds are well-known flavoring agents that contain nutraceutical properties and appear to have beneficial health effects. A study was therefore conducted to investigate the effects of cumin and coriander seeds on body weight, abdominal fat and lipid profile in rats.

View Article and Find Full Text PDF

SIRT1 modulation and lipid profile alterations in the cellular regulation of blood lipids in renal disorders among extremely obese individuals.

Cell Mol Biol (Noisy-le-grand)

September 2025

University Sousse, Faculty of Medicine "Ibn El-Jazzar", Department of Medical Genetics, Sousse, Tunisia.

The global epidemic of overweight and obesity is closely linked to the development of chronic kidney disease (CKD), with extremely obese individuals facing a particularly high risk. This study aimed to assess the relationship between lipid profile levels, SIRT1 expression, and RNA-34a-5P in the regulation of blood lipid levels among severely obese individuals with renal diseases. Conducted over six months in three specialized hospitals, the study included 100 participants divided into two groups: 50 obese individuals with renal diseases and 50 obese controls without renal problems.

View Article and Find Full Text PDF

Introduction Systemic inflammation alters lipid metabolism by suppressing hepatic lipoprotein synthesis, increasing catabolism, and impairing reverse cholesterol transport. These changes result in reduced levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and total cholesterol (TC), despite elevated cardiovascular risk, which is a phenomenon termed the "inflammatory lipid paradox." While well-characterized in chronic inflammatory diseases, such as rheumatoid arthritis, its prevalence and clinical impact in hospitalized adults with systemic inflammation remain underexplored.

View Article and Find Full Text PDF

Background: Identifying and understanding different dyslipidemia patterns is crucial for maintaining the cardiovascular health of older adults. Therefore, this study aimed to investigate the dyslipidemia profiles of the elderly population from communities in an Eastern Chinese province, focusing on dyslipidemia subtypes and patterns, and exploring the associated demographic and health-related factors.

Methods: A cross-sectional survey was conducted in communities in an Eastern Chinese province.

View Article and Find Full Text PDF