Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The impact of climate change on agricultural systems is a major concern as it can have a significant effect on the world food supply. The objective of this study was to evaluate climate change impacts on crop production and nitrate leaching in two distinct climatic zones in Canada. Spring wheat (Triticum aestivum L.) was selected for the semiarid regions of Western Canada (Swift Current, SK) and maize (Zea mays L.) was chosen for the more humid regions of central Canada (Woodslee, ON). Climate scenarios were based upon simulations from a Canadian Regional Climate Model (CanRCM4) under two Representative Concentration Pathways (RCP4.5 and RCP8.5) and crop simulations were conducted using the Decision Support System for Agrotechnology Transfer (DSSAT) model. Compared to the baseline climate scenario, wheat yields increased by 8, 8, 11, 15%, whereas maize yields decreased by 15, 25, 22, 41% under RCP4.5 2050s (2041-2070), RCP4.5 2080s (2071-2100), RCP8.5 2050s and RCP8.5 2080s scenarios, respectively. Annual nitrate leaching increased by 19, 57, 73, 129% at Swift Current and by 84, 117, 208, 317% at Woodslee under the four scenarios, respectively. Adaptation measures suggested that fertilizer N rate for spring wheat should be increased to 80-100 kg N ha-1 to obtain optimal yields although this will result in an additional risk of 5-8 kg N ha-1 nitrate leaching at Swift Current. The fertilizer N rate of 150 kg N ha-1 was found to be suitable for high maize yields at Woodslee. New wheat and maize cultivars with long growing seasons would enable crop growth to match the phenological stage and hence maintain high crop yields to adapt to increased temperatures in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6239327PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207370PLOS

Publication Analysis

Top Keywords

nitrate leaching
16
climate change
12
swift current
12
change impacts
8
impacts crop
8
humid regions
8
spring wheat
8
maize yields
8
fertilizer rate
8
climate
6

Similar Publications

Constructed wetlands (CWs) face dual challenges of arsenic contamination and greenhouse gas (GHG) emissions, particularly concerning the competing processes of As(III) immobilization and methane-dependent As(V) reduction (AOM-AsR). To address this dilemma, we developed a novel microbial-nitrate-zero valent iron/manganese synergy (MNZS) system that establishes dynamic redox gradients through Fe/Mn-mediated electron flux regulation. The MNZS mechanism leverages zero valent iron/manganese (ZVI/ZVM) oxidation to create oxygen-depleted microzones, generating bioavailable Fe(II)/Mn(II) species while initiating microbial nitrate-reducing-coupled Fe(II)/Mn(II) oxidation (NRFO/NRMO).

View Article and Find Full Text PDF

Multiple isotopes and GIS analyses reveal sources and drivers of nitrate in the Loess Plateau's groundwater.

Environ Pollut

August 2025

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:

Groundwater plays a pivotal role in mediating nitrogen transfer to aquatic ecosystems, particularly in arid regions. Water scarcity, coupled with intensive agricultural activities, has placed the groundwater systems under significant pressure from non-point source pollution, underscoring the need for targeted investigation. Focusing on the Chinese Loess Plateau (CLP), we combined dual-isotope analysis (δN-NO, δO-NO) with water isotopes (δD-HO, δO-HO) and implemented a dual-framework approach to investigate nitrate dynamics.

View Article and Find Full Text PDF

Nitrogen Leaching Estimation System version 5 (NLES5) is an empirical model extensively used for estimating annual nitrate leaching from the root zone. The model is based on leaching data obtained by multiplying the measured nitrate concentration below the root zone depth by the percolation calculated using a hydrological model, which together provides estimates of annual nitrate leaching from the root zone. However, this approach has some limitations, including redundancy and unclear error propagation in the relationship between nitrate concentration and percolation without considering seasonal variability.

View Article and Find Full Text PDF

Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land.

View Article and Find Full Text PDF

The United States (US Mid-Atlantic Region (MAR) has the potential to grow a variety of perennial feedstocks such as switchgrass and shrub willow to increase domestic energy production. These cellulosic feedstocks have also shown improved ecosystem services, such as soil carbon sequestration, nitrate leaching reduction, and flood mitigation along rivers and streams as partially harvested riparian buffers. To examine the effects on greenhouse gases (GHGs) and criteria air pollutants (CAPs) from using these feedstocks to produce ethanol or electricity, we conducted a comprehensive life cycle assessment (LCA) and estimated the impact on human health costs when land use is changed from corn production for ethanol.

View Article and Find Full Text PDF