98%
921
2 minutes
20
Nanostructured Conducting polymer (CP) actuators are promising materials for biomedical applications such as drug release systems. However, understanding the actuation behavior at the nano-scale has not yet been explored. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(pyrrole) (PPy) nanotubes doped with a large counter ion (i.e. poly(styrene sodium sulfonate) (PSS)) were fabricated using electrochemical deposition of PEDOT and PPy around poly(L-lactide) (PLLA) nanofiber templates, followed by template removal in chloroform. The actuation and mass transport behavior of PPy and PEDOT nanotubes were investigated and compared. The nanotubes were subjected to a redox process using cyclic voltammetry in 0.1M NaPSS electrolyte solution as the potential swept between -0.8 V and +0.4 V for 20 cycles at 10, 50, 100, and 200 mV/s scan rates. The mass transport behavior of these nanotubes was characterized via electrochemical quartz crystal microbalance (EQCM) technique. The EQCM results showed that PEDOT nanotubes had a higher mass exchange capability than their PPy counterparts, especially at higher scan rates. Also, it was revealed that PPy nanotubes were more sensitive to the scan rate than the PEDOT nanotubes, and the maximum mass exchange capability of the PPy nanotubes was noticeably reduced by increasing the scan rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2018.8513214 | DOI Listing |
Inorg Chem
September 2025
Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.
An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.
View Article and Find Full Text PDFChem Rev
September 2025
Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, P. R. China.
Diffusion is a fundamental process in the transfer of mass and energy. Diffusion metamaterials, a class of engineered materials with distinctive properties, enable precise control and manipulation of diffusion processes. Meanwhile, topology, a branch of mathematics, has attracted growing interest within the condensed matter physics community.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.
Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.
View Article and Find Full Text PDF