Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Potent anti-osteoporotic drugs have been developed over the past decades; however, the substantial need for treatments that can effectively and safely manage osteoporosis remains unmet. Barley leaf-derived products are one of best functional foods that can be used as nutritional supplements and detoxifiers in humans and are beneficial in improving bone disease. However, little information is available regarding the anti-osteoporotic effects of polysaccharides as the main component of barley leaf. This study aimed to clarify the beneficial effects of barley leaf (BLE0) polysaccharides on bone loss in ovariectomized mice and osteoclast differentiation in bone marrow-derived macrophages. BLE0 remarkably inhibited receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner. It also blocked RANKL-induced activation of osteoclastogenic signals including ERK and p38 and the expression of nuclear factor of activated T cells cytoplasmic 1, as a master regulator of osteoclast differentiation, leading to decreased expression of osteoclast-specific marker genes such as Atp6v0d2, DC-STAMP and cathepsin K. Micro-computed tomography revealed that a seven-week oral administration of BLE0 dramatically improved ovariectomy-induced trabecular bone loss. Anti-osteoporotic effects were confirmed using morphometric analysis. Taken together, BLE0 is a bioactive polysaccharide; it mitigates estrogen deficiency-induced bone loss by directly inhibiting osteoclast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.11.075DOI Listing

Publication Analysis

Top Keywords

bone loss
16
osteoclast differentiation
16
barley leaf
12
loss ovariectomized
8
ovariectomized mice
8
anti-osteoporotic effects
8
bone
6
ble0
5
protective effects
4
effects polysaccharide
4

Similar Publications

NAD Metabolism Regulates Proliferation of Macrophages in Atherosclerosis.

Arterioscler Thromb Vasc Biol

September 2025

Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).

Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).

Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.

View Article and Find Full Text PDF

This systematic review and meta-analysis aimed to evaluate the long-term clinical outcomes of regenerative procedures compared with access flap surgery for the treatment of intrabony defects, with a minimum follow-up period of 5 years. A systematic review protocol following PRISMA guidelines was conducted. Both electronic and manual searches were conducted to identify randomized clinical trials (RCTs) on regenerative treatment of deep intrabony defects (≥3 mm) with a follow-up of at least 5 years.

View Article and Find Full Text PDF

Osteoporotic hip fractures are a considerable cause of pain and disability particularly among the elderly. Osteoporosis causes loss of bone stability, which in turn leads to an increased risk of fractures especially in metaphyseal bone. Moreover, the body's capacity for healing is diminished, resulting in prolonged recovery times following these fractures.

View Article and Find Full Text PDF

Objective: Progesterone (PG) and its target, progesterone receptor (PGR), are important regulators in inflammatory diseases. This study aimed to investigate the specific role of PG in periodontitis and to elucidate the underlying mechanisms involving PGR.

Methods: Women with periodontitis, including 250 with PG deficiency, 250 with PG supplementation, and 245 controls (normal PG) were enrolled.

View Article and Find Full Text PDF

Gaucher's disease (GD) is the most common lysosomal storage disorder inherited in an autosomal recessive pattern. It occurs due to a deficiency of the enzyme glucocerebrosidase owing to a mutation in the acid-β-glucosidase () gene resulting in accumulation of glucocerebrosides in lysosomes of cells. It presents with abdominal distension, hepatosplenomegaly, developmental delay, pancytopenia, neurological manifestations and bone diseases.

View Article and Find Full Text PDF