98%
921
2 minutes
20
Voltage-gated ion transport as a means of manipulating magnetism electrically could enable ultralow-power memory, logic and sensor technologies. Earlier work made use of electric-field-driven O displacement to modulate magnetism in thin films by controlling interfacial or bulk oxidation states. However, elevated temperatures are required and chemical and structural changes lead to irreversibility and device degradation. Here we show reversible and non-destructive toggling of magnetic anisotropy at room temperature using a small gate voltage through H pumping in all-solid-state heterostructures. We achieve 90° magnetization switching by H insertion at a Co/GdO interface, with no degradation in magnetic properties after >2,000 cycles. We then demonstrate reversible anisotropy gating by hydrogen loading in Pd/Co/Pd heterostructures, making metal-metal interfaces susceptible to voltage control. The hydrogen storage metals Pd and Pt are high spin-orbit coupling materials commonly used to generate perpendicular magnetic anisotropy, Dzyaloshinskii-Moriya interaction, and spin-orbit torques in ferromagnet/heavy-metal heterostructures. Thus, our work provides a platform for voltage-controlled spin-orbitronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-018-0211-5 | DOI Listing |
Neurotrauma Rep
July 2025
Psychiatry and Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Most individuals with moderate-to-severe diffuse axonal injury (DAI) have impaired verbal fluency (VF) capacity. Still, the relationship between brain and VF recovery post-DAI has remained mostly unknown. The aim was to assess brain changes in 13 cortical thickness regions of interest (ROIs), fractional anisotropy (FA), and free water (FW) in three language-related tracts; the VF performance at 6 and 12 months after the DAI; and whether brain changes from 3 to 6 months predict VF performance from 6- to 12-month post-DAI.
View Article and Find Full Text PDFOncol Lett
November 2025
Department of Radiology, Zibo Central Hospital, Zibo, Shandong 255020, P.R. China.
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor, originating from the renal epithelium, and accounts for ~85% of RCC cases. The present study aimed to validate the efficacy of an MRI deep learning (DL) model to preoperatively predict the pathological grading of ccRCC. Therefore, a DL algorithm was constructed and trained using diffusion weighted imaging (DWI) and diffusion kurtosis imaging (DKI) sequence images.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.
Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.
Mol Psychiatry
September 2025
Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Iron-the most abundant magnetic brain substance-is essential for many biological processes, including dopamine and myelin synthesis. Quantitative susceptibility mapping (QSM) MRI has recently linked altered subcortical magnetic susceptibility (χ) to schizophrenia. Since χ is increased by iron and decreased by myelin, abnormal levels of either could underlie these QSM differences.
View Article and Find Full Text PDFAnn Plast Surg
September 2025
From the Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN.
Diffusion tensor imaging (DTI) has revolutionized neuroimaging by enabling a noninvasive visualization of tissue microstructure through the analysis of the apparent diffusion of water molecules. Originating from the foundational principles of Brownian motion and Fick's law, DTI evolved from early diffusion magnetic resonance imaging into an advanced diagnostic tool for in vivo characterization of axonal pathways. This review traces the historical development of DTI and evaluates its expanding clinical applications, particularly in assessing peripheral nerve pathologies.
View Article and Find Full Text PDF