98%
921
2 minutes
20
Objective: To investigate the effect of two light-curing protocols on mechanical behavior of three bulk-fill resin composites (BFRC) considering their optical properties.
Methods: One increment of 4 mm thickness of the bulk-fill resin composites Opus Bulk Fill, Tetric N-Ceram and Filtek Bulk Fill Flow were submitted to two different light-curing protocols: Sp - irradiance of 1000 mW/cm (20 s); Xp - irradiance of 3200 mW/cm (6 s). To assess the influence on the mechanical behavior it was studied polymerization shrinkage by X-ray microtomography (n = 3), Vickers hardness (n = 10) at the top and bottom surfaces of the samples, irradiance reaching the bottom surface (n = 3) and absorbance spectrum during the light-curing time interval (n = 3). Data were analyzed by two-way ANOVA test for parametric data and Kruskal Wallis test, followed by Wilcoxon or Mann-Whitney U post-test, for non-parametric data.
Results: All BFRCs contracted when light-cured, with greater contraction for Xp. Filltek Bulk Fill Flow showed highest polymerization shrinkage, for both Sp and Xp. All BFRCs showed minor hardness values on the bottom surface, with greater reduction for Xp. All BFRCs exhibited a decrease in irradiance at 4 mm depth. A decrease in absorbance intensity throughout the light-cure was observed, except for Opus Bulk Fill.
Conclusions: Regardless BFRCs composition, the light-curing protocol with lower irradiance and longer exposure time results in lower polymerization shrinkage and higher hardness. The higher irradiance in a shorter time interval compromises the mechanical behavior of the resin composites, which may result in undesirable clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2018.10.026 | DOI Listing |
Health Phys
September 2025
Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Center, Sacred Heart College (Autonomous), affiliated to Thiruvalluvar University, Tirupattur, Tamil Nadu, 635 601, India.
Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Engineering, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.
View Article and Find Full Text PDFSmall
September 2025
Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, South China University of Technology, Guangzhou, 510640, China.
In modern micro/nano fabrication, 3D printing technology drives industry transformation. However, existing technologies face bottlenecks in improving process efficiency and precision, while also struggling to achieve accurate fabrication of composite 3D microstructures. This study proposes a microlens self-focusing printing technique that integrates digital light processing (DLP) 3D printing with an optical microscope platform.
View Article and Find Full Text PDF