98%
921
2 minutes
20
Cancer is the leading cause of morbidity and mortality in the United States and globally. Owing to improved early diagnosis and advances in oncological therapeutic options, the number of cancer survivors has steadily increased. Such efficient cancer therapies have also lead to alarming increase in cardiovascular complications in a significant proportion of cancer survivors, due to adverse cardiovascular effects such as cardiotoxicity, cardiac atrophy, and myocarditis. This has emerged as a notable concern in healthcare and given rise to the new field of cardioncology, which aims at understanding the processes that occur in the two distinct disorders and how they interact to influence the progression of each other. A key player in both cancer and heart failure is the genome, which is predominantly transcribed to noncoding RNAs (ncRNAs). Since the emergence of ncRNAs as master regulators of gene expression, several reports have shown the relevance of ncRNAs in cancer and cardiovascular disorders. However, the knowledge is quite limited regarding the relevance of ncRNAs in cardioncology. The objective of this review is to summarize the current knowledge of ncRNAs in the context of cardioncology. Furthermore, the therapeutic strategies as well as the prospective translational applications of these ncRNA molecules to the clinics are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383355 | PMC |
http://dx.doi.org/10.1152/ajpheart.00418.2018 | DOI Listing |
Biologics
September 2025
Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Beijing, People's Republic of China.
Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.
View Article and Find Full Text PDFFront Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFNoncoding RNA Res
December 2025
Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
Purpose: To verify the stability and reliability of circulating microRNA (miRNA) profiles in plasma and serum under different processing and storage conditions to inform future applications to circulating biomarker analyses.
Background: The development of blood-based methods for early disease detection has become increasingly desirable across various medical fields. RNA profiles have been investigated but have been a challenge due to rapid degradation of the analyte by ubiquitous RNases.
Curr Drug Targets
September 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2025
Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.
View Article and Find Full Text PDF