Location of Solvated Probe Molecules Within Nonionic Surfactant Micelles Using Molecular Dynamics.

J Pharm Sci

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An iconic textbook that pharmaceutical scientists encounter in undergraduate courses is "Martin's Physical Pharmacy and Pharmaceutical Sciences." Within the chapter on Colloids, a figure indicates the location of solubilization of molecules within spherical, nonionic surfactant micelles. The surfactant consists of polyethylene glycol (PEG) hydrophilic headgroups and alkane chains for the hydrophobic tail. The figure shows benzene and toluene within the alkane core, salicylic acid (2-hydroxybenzoic acid) at the interface between the core and PEG chains, and then para-hydroxybenzoic acid (4-hydroxybenzoic acid) located between the PEG chains. Molecular dynamics simulations of octaethylene glycol monododecyl ether micelles were performed with a series of probe molecules, including those within the Martin's figure, to determine their solubilization location. Relative placement of molecules within the micelle was correct; however, some specifics were different. In particular, benzene and toluene are excluded from the core, and 4-hydroxybenzoic acid prefers to maintain contact with the core. A series of molecules containing 6 carbon atoms were also studied to determine the effects of cyclization (moves out of core), polar functionalization (anchored to interface), and aromatization (excluded from central core). Molecular dynamics was found to be a useful tool for gaining insight into interactions important in solubilization of molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.10.055DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
probe molecules
8
nonionic surfactant
8
surfactant micelles
8
solubilization molecules
8
benzene toluene
8
peg chains
8
4-hydroxybenzoic acid
8
molecules
6
core
6

Similar Publications

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF

Stress-induced organismal death is genetically regulated by the mTOR-Zeste-Phae1 axis.

Proc Natl Acad Sci U S A

September 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.

All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .

View Article and Find Full Text PDF

Giant mobility of surface-trapped ionic charges following liquid tribocharging.

Proc Natl Acad Sci U S A

September 2025

Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.

The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.

View Article and Find Full Text PDF

Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.

View Article and Find Full Text PDF

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF