98%
921
2 minutes
20
Purpose: Previous reports suggest that radiation therapy for breast cancer (BC) can cause ischemic heart disease, with the radiation-related risk increasing linearly with mean whole heart dose (MWHD). This study aimed to validate these findings in younger BC patients and to investigate additional risk factors for radiation-related myocardial infarction (MI).
Methods And Materials: A nested case-control study was conducted within a cohort of BC survivors treated during 1970 to 2009. Cases were 183 patients with MI as their first heart disease after BC. One control per case was selected and matched on age and BC diagnosis date. Information on treatment and cardiovascular risk factors was abstracted from medical and radiation charts. Cardiac doses were estimated for each woman by reconstructing her regimen using modern 3-dimensional computed tomography planning on a typical patient computed tomography scan.
Results: Median age at BC of cases and controls was 50.2 years (interquartile range, 45.7-54.7). Median time to MI was 13.6 years (interquartile range, 9.9-18.1). Median MWHD was 8.9 Gy (range, 0.3-35.2 Gy). MI rate increased linearly with increasing MWHD (excess rate ratio [ERR] per Gy, 6.4%; 95% confidence interval, 1.3%-16.0%). Patients receiving ≥20 Gy MWHD had a 3.4-fold (95% confidence interval, 1.5-7.6) higher MI rate than unirradiated patients. ERRs were higher for younger women, with borderline significance (ERR, 24.2%/Gy; ERR, 2.5%/Gy; P = .054). Whole heart dose-volume parameters did not modify the dose-response relationship significantly.
Conclusions: MI rate after radiation for BC increases linearly with MWHD. Reductions in MWHD are expected to contribute to better cardiovascular health of BC survivors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361769 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2018.10.025 | DOI Listing |
Mol Biol Rep
September 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).
View Article and Find Full Text PDFClin Res Cardiol
September 2025
Department of Cardiology, University Heart Center, University Hospital Zurich, Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
Background: Diabetic patients with ST-segment elevation myocardial infarction (STEMI) are at an increased risk of cardiovascular events as compared to non-diabetic patients. This analysis investigated outcomes of diabetic patients presenting with multivessel disease (MVD) and STEMI in a contemporary trial and the relevance of an immediate versus staged multivessel PCI strategy in this high-risk population.
Methods: Patients enrolled in the MULTISTARS AMI trial were stratified according to the presence/absence of diabetes.
Herz
September 2025
Department of Cardiology, The Third Clinical College of Wenzhou Medical University, 326000, Wenzhou, Zhejiang, China.
Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.
Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.
JACC Case Rep
July 2025
Department of Emergency Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA; Texas Emergency Medicine Research Center, Houston, Texas, USA.
Background: The timely transfer of patients with ST-segment elevation myocardial infarction (STEMI) to percutaneous coronary intervention-capable centers is critical for improving outcomes. Although the American Heart Association recommends a door-in-door-out (DIDO) time of ≤30 minutes, national compliance remains low.
Project Rationale: At Harris Health, no patients with STEMI met this benchmark before 2022.
Kardiologiia
September 2025
Department of Cardiology, The Ninth Medical Center, Chinese PLA General Hospital.
Background Hyperuricemia (HUA) frequently coexists with coronary artery disease (CAD) and is linked to adverse cardiovascular outcomes. The long-term impact of urate-lowering therapy (ULT) on clinical outcomes, including all-cause mortality and major adverse cardiovascular events (MACEs), in CAD patients after percutaneous coronary intervention (PCI) has not been determined. That was the aim of this study.
View Article and Find Full Text PDF