98%
921
2 minutes
20
Zipper-interacting protein kinase (ZIPK) is a Ser/Thr kinase that mediates a variety of cellular functions. Analogue-sensitive kinase technology was applied to the study of ZIPK signaling in coronary artery smooth muscle cells. ZIPK was engineered in the ATP-binding pocket by substitution of a bulky gatekeeper amino acid (Leu93) with glycine. Cell-permeable derivatives of pyrazolo[3,4-d]pyrimidine provided effective inhibition of L93G-ZIPK (1NM-PP1, IC , 1.0 μM; 3MB-PP1, IC , 2.0 μM; and 1NA-PP1, IC , 8.6 μM) but only 3MB-PP1 had inhibitory potential (IC > 10 μM) toward wild-type ZIPK. Each of the compounds also attenuated Rho-associated coiled-coil containing protein kinase (ROCK) activity under experimental conditions found to be optimal for inhibition of L93G-ZIPK. In silico molecular simulations showed effective docking of 1NM-PP1 into ZIPK following mutational enlargement of the ATP-binding pocket. Molecular simulation of 1NM-PP1 docking in the ATP-binding pocket of ROCK was also completed. The 1NM-PP1 inhibitor was selected as the optimal compound for selective chemical genetics in smooth muscle cells since it displayed the highest potency for L93G-ZIPK relative to WT-ZIPK and the weakest off-target effects against other relevant kinases. Finally, the 1NM-PP1 and L93G-ZIPK pairing was effectively applied in vascular smooth muscle cells to manipulate the phosphorylation level of LC20, a previously defined target of ZIPK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.25607 | DOI Listing |
Biol Trace Elem Res
September 2025
Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science
The uncharted effects of cadmium and cesium on circadian syndrome (CircS), an emerging circadian rhythm disorder drawing considerable attention, and underlying mechanisms warrant exigent elaboration. Data of 11141 subjects from National Health and Nutrition Examination Survey 2005-2018 were incorporated to investigate separate-, joint-/interaction-, and mixture-effects of urinary cadmium and cesium on prevalent CircS risk exploiting survey weight regression and quantile g-computation. The underlying mechanisms were probed by network toxicological analysis.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
September 2025
Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.
View Article and Find Full Text PDFJ Vet Med Sci
September 2025
Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Nippon Veterinary and Life Science University.
This study investigated the effects of soy isoflavone yeast fermented extract (soyF) and soy isoflavone yeast unfermented extract (soyN) on rat ileal smooth muscle contraction. SoyF and soyN inhibited carbachol (CCh)- or KCl-induced contraction in a concentration-dependent manner; however, these effects were stronger for CCh-induced contraction than that for KCl, and the relaxation effect was stronger for soyF than for soyN. SoyF-induced relaxation was attenuated by 4-aminopyridine (4-AP), a Kv channel inhibitor, and iberiotoxin (IbTX), a calcium-activated potassium channel (BK channel) inhibitor.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, PR China. Electronic address:
Background: Breast-conserving surgery (BCS) is the primary surgical approach for patients with breast cancer. The accurate determination of surgical margins during BCS is critical for patient prognosis; however, time constraints and limitations in current pathological techniques often prevent pathologists from performing this assessment intraoperatively. The inability to reliably assess margins during surgery can lead to incomplete tumor removal and the need for additional surgeries.
View Article and Find Full Text PDF