98%
921
2 minutes
20
Objective: Structural brain abnormalities are key risk factors for brain diseases, such as dementia, stroke, and depression, in type 2 diabetes. It is unknown whether structural brain abnormalities already occur in prediabetes. Therefore, we investigated whether both prediabetes and type 2 diabetes are associated with lacunar infarcts (LIs), white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and brain atrophy.
Research Design And Methods: We used data from 2,228 participants (1,373 with normal glucose metabolism [NGM], 347 with prediabetes, and 508 with type 2 diabetes (oversampled); mean age 59.2 ± 8.2 years; 48.3% women) of the Maastricht Study, a population-based cohort study. Diabetes status was determined with an oral glucose tolerance test. Brain imaging was performed with 3 Tesla MRI. Results were analyzed with multivariable logistic and linear regression analyses.
Results: Prediabetes and type 2 diabetes were associated with the presence of LIs (odds ratio 1.61 [95% CI 0.98-2.63] and 1.67 [1.04-2.68], respectively; = 0.027), larger WMH (β 0.07 log10-transformed mL [log-mL] [95% CI 0.00-0.15] and 0.21 log-mL [0.14-0.28], respectively; <0.001), and smaller white matter volumes (β -4.0 mL [-7.3 to -0.6] and -7.2 mL [-10.4 to -4.0], respectively; <0.001) compared with NGM. Prediabetes was not associated with gray matter volumes or the presence of CMBs.
Conclusions: Prediabetes is associated with structural brain abnormalities, with further deterioration in type 2 diabetes. These results indicate that, in middle-aged populations, structural brain abnormalities already occur in prediabetes, which may suggest that the treatment of early dysglycemia may contribute to the prevention of brain diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/dc18-1132 | DOI Listing |
Hormones (Athens)
September 2025
Division of Endocrinology, Baltimore VA Medical Center, Baltimore, MD, USA.
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a fairly new class of agents for diabetes that have demonstrated significant benefits in glycemic control and cardiovascular outcomes with outpatient use. The aim of this review is to provide an overview of the effect of SGLT2i use on glycemic control and clinical outcomes in the hospital setting.An electronic search of PubMed was conducted to analyze publications that assessed the inpatient use of SGLT2i and included patients with diabetes.
View Article and Find Full Text PDFEndocrine
September 2025
Otorhinolaryngology, Head and Neck Surgery, Candiolo Cancer Institute, FPO-IRCCS Turin, Turin, Italy.
Background: While osteoporosis in primary hyperparathyroidism (PHPT) is widely studied, PHPT patients with osteopenia remain less characterized. This study aimed to evaluate the prevalence, biochemical features, and estimated fracture risk of osteopenic PHPT patients in a real-life cohort.
Methods: We retrospectively analyzed a consecutive series of PHPT patients with available densitometric data at three sites.
Acta Diabetol
September 2025
Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.
Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.
View Article and Find Full Text PDFInfection
September 2025
The Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 16th floor, Copenhagen, 2100, Denmark.
Purpose: Infective endocarditis (IE) has been associated with severe outcomes when complicated by diabetes mellitus (DM). We aimed to report characteristics, microbial etiology, and mortality for patients with IE stratified by DM from a nationwide cohort.
Methods: We used Danish registries, and patients with first-time IE (2010-2020) were stratified by DM.
Biosci Biotechnol Biochem
September 2025
Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan.
Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.
View Article and Find Full Text PDF