98%
921
2 minutes
20
Staphylococcus pseudintermedius is an important pathogen in dogs. Since 2004, methicillin- resistant S. pseudintermedius (MRSP) isolates, often multidrug resistant, have been observed in dogs in the Netherlands. This study aims to link the observed resistance phenotypes in canine MRSP to genotypic antimicrobial resistance markers, and to study the phylogeny of MRSP by genomic comparisons. The genomes of fifty clinical isolates of MRSP from dogs from the Netherlands were sequenced. The resistance genes were identified, and for twenty one different antimicrobials their presence and sequence were associated with the resistance phenotypes. In case of observed discrepancies, the genes were aligned with reference genes. Of the phenotypic resistances, 98.3% could be explained by the presence of an associated resistance gene or point mutation. Discrepancies were mainly resistance genes present in susceptible isolates; 43.8% (7/16) were explained by an insertion, deletion or mutation in the gene. In relation with the resistance gene presence or absence, a single-nucleotide polymorphism (SNP) based phylogeny was constructed to define the population dynamics. The resistance gene content differed according to clonal complex, from very conserved (CC45), to partly conserved (CC71) to highly diverse (CC258) resistance gene patterns. In conclusion, this study shows that the antimicrobial genotype from whole genome sequencing is highly predictive of the resistance phenotype in MRSP. Interestingly, the observed clonal complexes of MRSP isolates were linked with resistance gene patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2018.09.013 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.
View Article and Find Full Text PDFSci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFEMBO J
September 2025
School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.
View Article and Find Full Text PDFBr J Cancer
September 2025
Institute of Life Sciences, Bhubaneswar, Odisha, India.
Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.
Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.