Optically robust, highly permeable and elastic protein films that support dual cornea cell types.

Biomaterials

Charles Perkins Centre, University of Sydney, NSW, 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia; Bosch Institute, University of Sydney, NSW, 2006, Australia. Electronic address:

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Damaged corneas can lead to blindness. Due to the worldwide shortage of donor corneas there is a tremendous unmet demand for a robust corneal replacement that supports growth of the major corneal cell types. Commercial artificial corneas comprise plastic polymers that do not adequately support diverse cell growth. We present a new class of protein elastomer-dominated synthetic corneas with attractive performance that intimately couple biologically active tropoelastin to mechanically robust and durable protein silk. Fabricated films substantially replicate the natural cornea physically and by interacting with both key cells types used in cornea repair. Performance encompasses optical clarity at high transmittance, compatible refractive index, substantial glucose permeability, compliant mechanical properties, and support of both growth and function of corneal epithelial and endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2018.10.006DOI Listing

Publication Analysis

Top Keywords

cell types
8
optically robust
4
robust highly
4
highly permeable
4
permeable elastic
4
elastic protein
4
protein films
4
films support
4
support dual
4
dual cornea
4

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Warfarin is a widely used vitamin K antagonist (VKA) with known pleiotropic effects beyond anticoagulation. Preclinical and case-control evidence suggests that warfarin may affect hematopoiesis, but longitudinal human evidence is lacking. To explore this potential effect, we conducted a post-hoc analysis of participants in the Hokusai-VTE and ENGAGE AF-TIMI 48 trials, which randomized patients to warfarin or the direct oral anticoagulant edoxaban with routine laboratory testing at predefined follow-up visits.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Background: Glucocorticoids remain the primary treatment for acute lymphoblastic leukemia (ALL) in children. However, glucocorticoid-resistant ALL exhibits increased mortality rates. To overcome resistance and improve management strategies, alternative therapeutic agents are required.

View Article and Find Full Text PDF