A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Astrocyte-specific deletion of Kir6.1/K-ATP channel aggravates cerebral ischemia/reperfusion injury through endoplasmic reticulum stress in mice. | LitMetric

Astrocyte-specific deletion of Kir6.1/K-ATP channel aggravates cerebral ischemia/reperfusion injury through endoplasmic reticulum stress in mice.

Exp Neurol

Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin, PR China. Electronic address:

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ATP-sensitive potassium (K-ATP) channels, coupling cell metabolism to cell membrane potential, are involved in brain diseases including stroke. Emerging evidence shows that astrocytes play important roles in the pathophysiology of cerebral ischemia. Kir6.1, a pore-forming subunit of K-ATP channel, is prominently expressed in astrocytes and participates in regulating its function. However, the exact role of astrocytic Kir6.1-containg K-ATP channel (Kir6.1/K-ATP) in ischemic stroke remains unclear. Here, we found that astrocytic Kir6.1 knockout (KO) mice exhibited larger infarct areas and more severe brain edema and neurological deficits in middle cerebral artery occlusion stroke model. Both activated gliosis and neuronal loss were aggravated in astrocytic Kir6.1 KO mice. Furthermore, the protein levels of pro-apoptotic protein Bcl-2 associated X (Bax) and active caspase-3 were up-regulated and the expression of anti-apoptotic protein Bcl-2 was down-regulated in astrocytic Kir6.1 KO mice. This is accompanied by enhanced endoplasmic reticulum stress (ER stress) responses in brain tissues and in astrocytes during ischemia/reperfusion (I/R) injury. Finally, inhibition of ER stress rescued astrocyte apoptosis induced by Kir6.1 deletion during I/R injury. Collectively, our findings reveal that astrocytic Kir6.1/K-ATP channel protects brain from cerebral ischemia/reperfusion injury through inhibiting ER stress and suggest that astrocytic Kir6.1/K-ATP channel is a promising therapeutic target for ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2018.10.005DOI Listing

Publication Analysis

Top Keywords

kir61/k-atp channel
12
astrocytic kir61
12
cerebral ischemia/reperfusion
8
ischemia/reperfusion injury
8
endoplasmic reticulum
8
reticulum stress
8
k-atp channel
8
ischemic stroke
8
kir61 mice
8
protein bcl-2
8

Similar Publications