A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A High-Resolution Spatial Model to Predict Exposure to Pharmaceuticals in European Surface Waters: ePiE. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Environmental risk assessment of pharmaceuticals requires the determination of their environmental exposure concentrations. Existing exposure modeling approaches are often computationally demanding, require extensive data collection and processing efforts, have a limited spatial resolution, and have undergone limited evaluation against monitoring data. Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a spatially explicit model calculating concentrations of active pharmaceutical ingredients (APIs) in surface waters across Europe at ∼1 km resolution. ePiE strikes a balance between generating data on exposure at high spatial resolution while having limited computational and data requirements. Comparison of model predictions with measured concentrations of a diverse set of 35 APIs in the river Ouse (UK) and Rhine basins (North West Europe), showed around 95% were within an order of magnitude. Improved predictions were obtained for the river Ouse basin (95% within a factor of 6; 55% within a factor of 2), where reliable consumption data were available and the monitoring study design was coherent with the model outputs. Application of ePiE in a prioritisation exercise for the Ouse basin identified metformin, gabapentin, and acetaminophen as priority when based on predicted exposure concentrations. After incorporation of toxic potency, this changed to desvenlafaxine, loratadine, and hydrocodone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328286PMC
http://dx.doi.org/10.1021/acs.est.8b03862DOI Listing

Publication Analysis

Top Keywords

exposure pharmaceuticals
8
surface waters
8
exposure concentrations
8
spatial resolution
8
river ouse
8
ouse basin
8
exposure
6
data
5
high-resolution spatial
4
model
4

Similar Publications