98%
921
2 minutes
20
Gliomas are the most commonly occurring primary malignant brain tumors in the central nervous system of adults. They are rarely curable and the prognosis for high grade gliomas is generally poor. Recently, long non-coding RNA (lncRNA) human ovarian cancer-specific transcript 2 (HOST2) has been reported to be expressed at high levels in human ovarian cancer, involving tumorigenesis. However, little is still known about whether and how HOST2 regulates glioma development and progression. Therefore, this study aims to investigate the role of HOST2 in human glioma cells. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to determine the expression of lncRNA HOST2, let-7b, and PBX3 in human glioma cells. Cultured human glioma cells were treated with siRNA (si)-lncRNA HOST2, let-7b mimic, si-lncRNA HOST2 + let-7b inhibitor, and si-PBX3. Parameters including cell viability, colony formation, cell migration, and cell invasion were detected by cell counting kit-8 assay, colony formation assay, scratch test, and Transwell assay respectively to determine the effects of down-regulated HOST2 on glioma cells. Tumor formation in nude mice was evaluated by subcutaneous tumor formation experiment. Results showed that HOST2 and PBX3 were highly expressed in glioma tissue whereas let-7b was expressed at much lower levels. In response to treatment with si-lncRNA HOST2, si-PBX3, and let-7b mimic, glioma cell lines exhibited decreased cell viability, suppressed cell migration, invasion, and reduced colony formation of glioma cells. This was accompanied by an attenuated tumor formation with smaller volume and weight in nude mice, suggesting that down-regulated HOST2 could inhibit the tumorigenicity of glioma cells. Lastly, we found that lncRNA HOST2 was highly expressed in glioma tissues and its down-regulation could inhibit the growth and invasion of glioma cells. © 2018 IUBMB Life, 71(1):93-104, 2019.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/iub.1943 | DOI Listing |
Front Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFBiochem Biophys Rep
June 2025
The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.
Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.
Chemistry
September 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
One of the most difficult issues facing humanity today is the treatment of cancer. A binary cancer treatment called boron neutron capture therapy (BNCT) works especially well for high-grade gliomas and metastatic brain malignancies. Due to their preferential absorption by developing tumor cells, boronated amino acids have drawn a lot of attention among the several boron-containing compounds utilized as BNCT agents.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Korea.
Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.
View Article and Find Full Text PDF