Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Calcium storage organelles are common to all eukaryotic organisms and play a pivotal role in calcium signaling and cellular calcium homeostasis. In most organelles, the intraorganellar calcium concentrations rarely exceed micromolar levels. Acidic organelles called acidocalcisomes, which concentrate calcium into dense phases together with polyphosphates, are an exception. These organelles have been identified in diverse organisms, but, to date, only in cells that do not form calcium biominerals. Recently, a compartment storing molar levels of calcium together with phosphorous was discovered in an intracellularly calcifying alga, the coccolithophore , raising a possible connection between calcium storage organelles and calcite biomineralization. Here we used cryoimaging and cryospectroscopy techniques to investigate the anatomy and chemical composition of calcium storage organelles in their native state and at nanometer-scale resolution. We show that the dense calcium phase inside the calcium storage compartment of the calcifying coccolithophore and the calcium phase stored in acidocalcisomes of the noncalcifying alga have common features. Our observations suggest that this strategy for concentrating calcium is a widespread trait and has been adapted for coccolith formation. The link we describe between acidocalcisomal calcium storage and calcium storage in coccolithophores implies that our physiological and molecular genetic understanding of acidocalcisomes could have relevance to the calcium pathway underlying coccolithophore calcification, offering a fresh entry point for mechanistic investigations on the adaptability of this process to changing oceanic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205483PMC
http://dx.doi.org/10.1073/pnas.1804139115DOI Listing

Publication Analysis

Top Keywords

calcium storage
28
calcium
17
storage organelles
16
calcium phase
8
storage
7
organelles
7
native-state imaging
4
imaging calcifying
4
calcifying noncalcifying
4
noncalcifying microalgae
4

Similar Publications

This study investigated the effects of a low-frequency polarized electric field (LFPEF) on postharvest disease resistance and storage quality of grapes. LFPEF treatment (3 h/d) significantly reduced weight loss, suppressed lesion expansion, and maintained fruit firmness by reinforcing cell wall integrity and enhancing defense-related enzyme activities. Mechanistic analyses indicated that LFPEF activated Ca signaling, promoted calcium accumulation, and upregulated calcium sensor genes, thereby contributing to membrane stabilization.

View Article and Find Full Text PDF

Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.

View Article and Find Full Text PDF

Bioprotective LAB3 cells that produce bacteriocin-like substances were entrapped in 4% (w/w) sodium alginate matrices, either with or without 10% (w/w) sodium caseinate. The effects of bead formulation-alginate alone or combined with caseinate, with or without the addition of 20% (w/w) MRS broth or M17 broth-on the culturability of LAB3 cells within the beads and their anti activity were assessed over 12 days of storage at 30 °C in closed bottles. Calcium-alginate-caseinate beads supplemented with MRS broth proved most effective in preserving both culturability and anti- activity.

View Article and Find Full Text PDF

A 3D printed platform for sample treatment and detection of phytic acid in spinach leaves using a paper-based electrochemical biosensor.

Biosens Bioelectron

August 2025

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Bitonto 139, 00133, Rome, Italy. Electronic address:

Phytic acid is a phosphorylated derivative of myo-inositol that is ubiquitous in plants and serves as the primary storage form of phosphorus. In human nutrition, phytic acid is considered an anti-nutrient because it chelates essential minerals, including calcium, iron, and zinc. This binding action reduces the bioavailability of these metals, highlighting the importance of monitoring phytic acid in food.

View Article and Find Full Text PDF

Performance assessment of reclaimed fly ash-slag geopolymers incorporating waste spent garnet and waste foundry sand under different curing regimes.

Environ Res

September 2025

Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.

Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).

View Article and Find Full Text PDF