98%
921
2 minutes
20
Changes in the concentration of soil nitrogen (N) or its components may directly affect ecosystem functioning in forestry. Thinning of forest stands, a widely used forestry management practice, may transform soil nutrients directly by altering the soil environment, or indirectly by changing above- or belowground plant biomass. The study objectives were to determine how tree stem density affects the soil N pool and what mechanisms drive any potential changes. In this study, N and its active components were measured in the soil of a plantation across two full growing seasons, in 12 (25 × 25 m) plots: (low thinning, removal of 15% of the trees, three plot repetitions), moderate thinning (MT) (35% removal) and heavy thinning (HT) (50% removal) and no thinning control. Environmental indices, like the light condition, soil respiration, soil temperatures, and prescription, were measured in the plots also. Results indicated that soil total nitrogen (STN) was affected by tree stem density adjustments in the short-term; STN generally increased with decreasing tree stem density, reaching its highest concentration in the MT treatment before decreasing in HT. This pattern was echoed by the DON/STN ratio dissolved organic nitrogen (DON) under MT. A lower DON/STN was measured across the seasons. Microbial biomass nitrogen (MBN) and the SOC/STN (soil organic carbon (SOC)) ratio and density treatments influenced MBN concentration and inhibited SOC/STN. MT tended to accumulate more STN, produce lower DON/STN and had a generally higher microbial activity, which may be partly ascribed to the higher MBN value, MBN/STN ratio and lower DON/STN. The water conditions (soil moisture), light and soil temperatures could partly be responsible for the N pool dynamic in the different density treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166636 | PMC |
http://dx.doi.org/10.7717/peerj.5647 | DOI Listing |
Mycorrhiza
September 2025
Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.
View Article and Find Full Text PDFPhysiol Plant
September 2025
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.
Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Bigea, University of Bologna, Bologna, Italy.
The present review summarizes recent information on the formation and fine structure of epidermal microornamentation and adhesive setae in scale pads of the tail in some arboreal geckos. The study utilizes transmission and scanning electron microscopy, in conjunction with immunolabeling, to detect the main proteins of the microornamentation, known as Corneous Beta Proteins. These are special small proteins with a central region containing beta-sheets that form most of the corneous material of scales and pads.
View Article and Find Full Text PDFAm J Bot
September 2025
Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
Premise: Floristic exchanges between Oceania and tropical Asia have significant asymmetrical characteristics. Many groups of plants have dispersed southward from Asia to Oceania, whereas a northward dispersal from Oceania to tropical Asia (i.e.
View Article and Find Full Text PDFTree Physiol
September 2025
Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e.
View Article and Find Full Text PDF