Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Entropy images, representing the complexity of original fundus photographs, may strengthen the contrast between diabetic retinopathy (DR) lesions and unaffected areas. The aim of this study is to compare the detection performance for severe DR between original fundus photographs and entropy images by deep learning. A sample of 21,123 interpretable fundus photographs obtained from a publicly available data set was expanded to 33,000 images by rotating and flipping. All photographs were transformed into entropy images using block size 9 and downsized to a standard resolution of 100 × 100 pixels. The stages of DR are classified into 5 grades based on the International Clinical Diabetic Retinopathy Disease Severity Scale: Grade 0 (no DR), Grade 1 (mild nonproliferative DR), Grade 2 (moderate nonproliferative DR), Grade 3 (severe nonproliferative DR), and Grade 4 (proliferative DR). Of these 33,000 photographs, 30,000 images were randomly selected as the training set, and the remaining 3,000 images were used as the testing set. Both the original fundus photographs and the entropy images were used as the inputs of convolutional neural network (CNN), and the results of detecting referable DR (Grades 2-4) as the outputs from the two data sets were compared. The detection accuracy, sensitivity, and specificity of using the original fundus photographs data set were 81.80%, 68.36%, 89.87%, respectively, for the entropy images data set, and the figures significantly increased to 86.10%, 73.24%, and 93.81%, respectively (all values <0.001). The entropy image quantifies the amount of information in the fundus photograph and efficiently accelerates the generating of feature maps in the CNN. The research results draw the conclusion that transformed entropy imaging of fundus photographs can increase the machinery detection accuracy, sensitivity, and specificity of referable DR for the deep learning-based system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151683PMC
http://dx.doi.org/10.1155/2018/2159702DOI Listing

Publication Analysis

Top Keywords

entropy images
24
fundus photographs
20
original fundus
16
photographs entropy
12
diabetic retinopathy
12
data set
12
nonproliferative grade
12
images
9
photographs
8
images deep
8

Similar Publications

CrossNeXt: ConvNeXt-based cross-teaching with entropy minimization for semi-supervised liver segmentation from abdominal MRI.

Comput Med Imaging Graph

August 2025

Academy for Engineering and Technology, Fudan University, Shanghai, 200433, People's Republic of China; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China; Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases,

Recent advancements in artificial intelligence have significantly enhanced the efficiency of abdominal MRI segmentation, thereby improving the screening and diagnosis of liver diseases. However, accurate precise liver segmentation in MRI remains a challenging task due to the high variability in liver morphology and the limited availability of high-quality annotated datasets. To address these challenges, this study presents an advanced semi-supervised learning framework that integrates cross-teaching with pseudo-label generation and intra-batch entropy minimization.

View Article and Find Full Text PDF

Thyroid eye disease (TED) is a prevalent autoimmune orbital disorder that can severely impair visual function and significantly diminish patients' quality of life. In recent years, several studies have attempted to automate TED diagnosis using optical coherence tomography (OCT) images. However, existing approaches primarily rely on convolutional neural networks (CNNs) combined with attention mechanisms and are mostly trained using traditional cross-entropy loss.

View Article and Find Full Text PDF

Objective: To identify the key features of facial and tongue images associated with anemia in female populations, establish anemia risk-screening models, and evaluate their performance.

Methods: A total of 533 female participants (anemic and healthy) were recruited from Shuguang Hospital. Facial and tongue images were collected using the TFDA-1 tongue and face diagnosis instrument.

View Article and Find Full Text PDF

Background: This study aimed to investigate the performance of two versions of ChatGPT (o1 and 4o) in making decisions about coronary revascularization and to compare the recommendations of these versions with those of a multidisciplinary Heart Team. Moreover, the study aimed to assess whether the decisions generated by ChatGPT, based on the internal knowledge base of the system and clinical guidelines, align with expert recommendations in real-world coronary artery disease management. Given the increasing prevalence and processing capabilities of large language models, such as ChatGPT, this comparison offers insights into the potential applicability of these systems in complex clinical decision-making.

View Article and Find Full Text PDF

Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.

View Article and Find Full Text PDF