Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The interplay between strongly correlated liquid and crystal phases for two-dimensional electrons exposed to a high transverse magnetic field is of fundamental interest. Through the nonperturbative fixed-phase diffusion Monte Carlo method, we determine the phase diagram of the Wigner crystal in the ν-κ plane, where ν is the filling factor and κ is the strength of Landau-level (LL) mixing. The phase boundary is seen to exhibit a striking ν dependence, with the states away from the magic filling factors ν=n/(2pn+1) being much more susceptible to crystallization due to Landau-level mixing than those at ν=n/(2pn+1). Our results explain the qualitative difference between the experimental behaviors observed in n- and p-doped gallium arsenide quantum wells and, in particular, the existence of an insulating state for ν<1/3 and also for 1/3<ν<2/5 in low-density p-doped systems. We predict that, in the vicinity of ν=1/5 and ν=2/9, increasing LL mixing causes a transition not into an ordinary electron Wigner crystal, but rather into a strongly correlated crystal of composite fermions carrying two vortices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.116802 | DOI Listing |