98%
921
2 minutes
20
In this paper, we present for the first time a new tool, based on Droplet Digital™ Polymerase Chain Reaction (ddPCR), for absolute quantification of key genera of gastrointestinal (GI) nematode parasites of grazing livestock. Four combinations of primers/probe sets targeting the internal transcribed spacer region 2 (ITS2) of the ribosomal RNA gene array were designed using the Primer3 software, following in silico analysis of nucleotide sequences from nematodes of interest downloaded from common databases. The amplified regions include both a universal region for detection of any strongylid gastrointestinal parasite and three different genus specific regions, making it possible to differentiate between the most important GI nematodes of sheep in Sweden: Haemonchus, Teladorsagia and Trichostrongylus. Analysis of samples containing serial dilutions and different mixtures of genomic DNA extracted from different species of adult worms proved useful in assessment of different threshold settings with the QuantaSoft software. Analysis of template DNA from these worms indicated that ddPCR is a viable choice for detection and absolute quantification of the different genera and also in samples with multiple species. Interpretation of the ddPCR results was straightforward and choice of analytical approach had little influence on the final results. Thus, the results obtained in the different analytical approaches seemed to be robust and the concentrations determined were uniform. Furthermore, the linear range of the Haemonchus ddPCR assay was similar to that of real-time PCR (qPCR). Taken together, our data confirm the suitability of ddPCR for detection and absolute quantification of three major sheep pathogens when tested on larval cultures from pooled ovine faeces. The results also indicate that ddPCR can be a useful complement to applications based on conventional egg counting methods such as the faecal egg reduction test (FECRT).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetpar.2018.07.008 | DOI Listing |
Eur J Clin Pharmacol
September 2025
Department of Clinical Pharmacy and Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands.
Purpose: Non-adherence to inhaled medication poses a significant clinical and economic burden on patients with respiratory diseases. This narrative review provides an overview of key aspects of hair analysis, in general and specific for inhaled medications, and explores the potential of hair analysis as a novel tool to monitor adherence to inhaled medications.
Methods: PubMed searches were conducted to explore four aspects: (1) mechanisms of (inhaled) drug's systemic absorption and deposition in hair; (2) quantification of drugs in hair; (3) factors impacting (inhaled) drug hair concentrations; and (4) clinical studies assessing inhaled medication adherence through hair analysis.
Pract Lab Med
September 2025
Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
Background: Nucleic Acid Amplification Tests (NAAT) remain one of the most reliable methods for pathogen identification. Given the high false-negative rates associated with traditional staining and microscopic examination, the time-consuming nature and low sensitivity of bacterial culture methods, as well as the inability of conventional NAAT to achieve absolute quantification.
Methods: To achieve rapid and quantitative detection of , we selected the 23S rRNA gene as the target for identification and developed a droplet digital PCR detection method.
Paediatr Child Health
August 2025
Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Objectives: Cobb angle is a standard method for quantification of scoliosis in adolescent idiopathic scoliosis to guide treatment decisions. Precise and timely curve detection can ensure early referrals, amenable for bracing. Radiology reports serve as a guiding tool for family physicians to expedite specialist referrals.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan.
Albumin and γ-globulin concentrations in an electrolyte solution have been quantified by a multivariate-regressive Gaussian admittance relaxation times distribution (mgARTD). The mgARTD is built based on the training data consisting of the impedance spectroscopy system measurement result of protein mixture solutions with a known concentration of albumin, γ-globulin, and sodium electrolyte to perform concentration quantification on a prospective protein mixture solution with an unknown concentration. The mgARTD consists of three steps: (1) Prediction step of the peak matrix by Gaussian ARTD (gARTD) with the Gaussian process and peak detection algorithm, (2) Training step of the approximated coefficient matrix ̃ based on the multivariate-regressive formula = + (: multivariate-regression coefficient matrix, : error matrix, and : known concentration matrix of the training data set), and (3) Quantification step of the approximated concentration ̃ based on the Gauss-Newton algorithm from the predicted of the quantification data and the approximated ̃.
View Article and Find Full Text PDF