A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An improved collaborative filtering method based on similarity. | LitMetric

An improved collaborative filtering method based on similarity.

PLoS One

School of Information Science and Technology, Northwest University, Xi'an, Shaanxi, China.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recommender system is widely used in the field of e-commerce and plays an important role in guiding customers to make smart decisions. Although many algorithms are available in the recommender system, collaborative filtering is still one of the most used and successful recommendation technologies. In collaborative filtering, similarity calculation is the main issue. In order to improve the accuracy and quality of recommendations, we proposed an improved similarity model, which takes three impact factors of similarity into account to minimize the deviation of similarity calculation. Compared with the traditional similarity measure, the advantages of our proposed model are that it makes full use of rating data and solves the problem of co-rated items. To validate the efficiency of the proposed algorithm, experiments were performed on four datasets. Results show that the proposed method can effectively improve the preferences of the recommender system and it is suitable for the sparsity data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152957PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204003PLOS

Publication Analysis

Top Keywords

collaborative filtering
12
recommender system
12
similarity calculation
8
similarity
6
improved collaborative
4
filtering method
4
method based
4
based similarity
4
similarity recommender
4
system field
4

Similar Publications