A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enabling Lithium-Metal Anode Encapsulated in a 3D Carbon Skeleton with a Superior Rate Performance and Capacity Retention in Full Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Suppressing the formation of lithium (Li) dendrites is central to implementing Li-metal anode, which has gained growing attention due to its ultrahigh specific capacity and low redox potential. Here, a novel approach is adopted to deposit Li-metal within a rigid three-dimensional (3D) carbon paper (3DCP) network, which consists of a cross-link framework of carbon fibers and graphene nanosheets (GNs). This unique structure yields a uniform distribution of Li-nuclei during the preliminary stage of Li-plating and the formation of a stable solid-electrolyte interface. The as-obtained anode can deliver a high areal capacity of 10 mAh cm without the dendritic formation after 1000 cycles in a Li@3DCP/LiFePO full cell at 4 C. In addition, the Li@3DCP anode displays low voltage platform (<20 mV at 1 mA cm), high plating/stripping efficiency (99.0%), and long lifespan (>1000 h). When coupled with LiNiCoAlO cathode, the Li@3DCP electrode exhibits a superior rate capability up to 10 C and high temperature performance (60 °C). The unprecedented performance is attributed to the desirable combination of micro/nanostructures in 3DCP, in which carbon fiber framework provides the mechanical stability for volume change, whereas numerous lithiophilicity sites on GNs enable the suppression of Li-dendrite growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b13506DOI Listing

Publication Analysis

Top Keywords

superior rate
8
enabling lithium-metal
4
anode
4
lithium-metal anode
4
anode encapsulated
4
carbon
4
encapsulated carbon
4
carbon skeleton
4
skeleton superior
4
rate performance
4

Similar Publications