98%
921
2 minutes
20
Objectives: Minimally invasive extracorporeal CO2 removal is an accepted supportive treatment in chronic obstructive pulmonary disease patients. Conversely, the potential of such technique in treating acute respiratory distress syndrome patients remains to be investigated. The aim of this study was: 1) to quantify membrane lung CO2 removal (VCO2ML) under different conditions and 2) to quantify the natural lung CO2 removal (VCO2NL) and to what extent mechanical ventilation can be reduced while maintaining total expired CO2 (VCO2tot = VCO2ML + VCO2NL) and arterial PCO2 constant.
Design: Experimental animal study.
Setting: Department of Experimental Animal Medicine, University of Göttingen, Germany.
Subjects: Eight healthy pigs (57.7 ± 5 kg).
Interventions: The animals were sedated, ventilated, and connected to the artificial lung system (surface 1.8 m, polymethylpentene membrane, filling volume 125 mL) through a 13F catheter. VCO2ML was measured under different combinations of inflow PCO2 (38.9 ± 3.3, 65 ± 5.7, and 89.9 ± 12.9 mm Hg), extracorporeal blood flow (100, 200, 300, and 400 mL/min), and gas flow (4, 6, and 12 L/min). At each setting, we measured VCO2ML, VCO2NL, lung mechanics, and blood gases.
Measurements And Main Results: VCO2ML increased linearly with extracorporeal blood flow and inflow PCO2 but was not affected by gas flow. The outflow PCO2 was similar regardless of inflow PCO2 and extracorporeal blood flow, suggesting that VCO2ML was maximally exploited in each experimental condition. Mechanical ventilation could be reduced by up to 80-90% while maintaining a constant PaCO2.
Conclusions: Minimally invasive extracorporeal CO2 removal removes a relevant amount of CO2 thus allowing mechanical ventilation to be significantly reduced depending on extracorporeal blood flow and inflow PCO2. Extracorporeal CO2 removal may provide the physiologic prerequisites for controlling ventilator-induced lung injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CCM.0000000000003430 | DOI Listing |
J Hazard Mater
September 2025
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:
Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. Electronic address:
This study investigates high-light-tolerant Nannochloropsis oceanica Rose Bengal mutants (RB2 and RB113) for bioremediation of shrimp aquaculture wastewater (SWW) under increased temperature and light, simulating future climate change. Cultivations were performed under 250 μmol photons m·s with flue gas CO₂ supply. At 18 °C, RB mutants and wild-type (WT) strain showed similar growth.
View Article and Find Full Text PDFWater Res
September 2025
College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China. Electronic address:
This study presents a renewable electricity-driven microbial electrosynthesis (MES) system integrated with biological nitrogen removal (BNR) to achieve carbon-negative wastewater treatment. The MES system converts CO₂ into acetate, which is directly utilized as an internal carbon source for denitrification. Incorporation of biochar-derived conductive materials enhanced electron transfer, increasing acetate productivity to 1.
View Article and Find Full Text PDFInorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDF