A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Sensitivity analyses for improving sulfur management strategies in winter oilseed rape. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Because sulfur (S) depletion in soil results in seed yield losses and grain quality degradation, especially in high S-demanding crops such as oilseed rape (Brassica napus L.), monitoring S fertilisation has become a central issue. Crop models can be efficient tools to conduct virtual experiments under different fertilisation management strategies. Using the process-based model SuMoToRI, we aimed to analyse the impact of different S fertilisation strategies coupled with the variablility observed in major plant characteristics in oilseed rape i.e. radiation use efficiency (RUE), carbon (C) allocation to the leaves (β) and specific leaf area (SLA) on plant performance-driven variables encompassing total biomass (TDW), S in the photosynthetic leaves (QSmobile.GL) and leaf area index (LAIGL). The contrasting S supply conditions differed in the amount of S (5 levels), and the timing of application (at bolting and/or at flowering, which included a fractioned condition). For this purpose, we performed a global sensitivity analysis (GSA) and calculated two sensitivity indices i.e. the Partial Raw Correlation Coefficient (PRCC) and the Sobol index. The results showed that whatever the timing of S supply, TDW, LAIGL and QSmobile.GL increased as S input increased. For a given S supply, there was no difference in TDW, LAIGL and QSmobile.GL between a single and a fractioned supply. Moreover, delaying the supply until flowering reduced the TDW and LAIGL whereas QSmobile.GL increased. Results showed that RUE had the greatest impact on TDW under all levels of S supply and all application timings, followed by β and SLA. RUE mostly impacted on QSmobile.GL, depending on S supply conditions, whereas it was the parameter with the least impact on LAIGL. Ultimately, our results provide strong evidence of optimised S fertilisation timings and plant characteristics that will guide producers in their agricultural practices by using specific varieties under constrained S fertilisation strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147610PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204376PLOS

Publication Analysis

Top Keywords

oilseed rape
12
tdw laigl
12
laigl qsmobilegl
12
management strategies
8
fertilisation strategies
8
plant characteristics
8
leaf area
8
supply conditions
8
qsmobilegl increased
8
supply
7

Similar Publications