Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Vascular endothelial growth factor (VEGF)-Notch signaling pathway plays an important role in aplastic anemia (AA). This study aimed to evaluate the regulatory roles of VEGF-Notch signaling pathway on mesenchymal stem cells (MSCs) isolated from AA patients with kidney deficiency and blood stasis (KB) (AA MSCs).
Methods: Expression of VEGF-Notch signaling related factors, including VEGF, VEGFR, Notch-1, Jagged1, Delta-like1, and hes1 was detected in bone marrow (BM) tissues and AA MSCs by Western blot analysis. VEGF (100 ng/mL) and γ-secretase inhibitor (DAPT) (10 μM) was used to active and inhibit VEGF-Notch signaling in AA MSCs, respectively. After treatment, the proliferation, apoptosis, and adipogenic differentiation of AA MSCs was detected by Cell Counting Kit-8, flow cytometry, and Oil red O staining, respectively. Lentivirus short hairpin RNA (shRNA) were constructed to downregulate Notch-1 and VEGF in normal bone marrow mesenchymal stem cells (BMSCs), and the effects of VEGF/Notch-1 shRNA transfected BMSCs on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated.
Results: Significantly lower expression of VEGF, VEGFR, Notch-1, Jagged1, Delta-like1, and hes1 was revealed in AA BM tissues and AA MSCs when compared with the normal control (P < 0.05). The intervention of DAPT significantly inhibited the proliferation, and promoted the apoptosis and adipogenic differentiation of AA MSCs, while VEGF intervention exhibited opposite results (P < 0.05). Meanwhile, the proliferation, migration, and angiogenesis of HUVECs were significantly promoted by normal BMSCs, while inhibited by VEGF/Notch-1 shRNA transfected BMSCs (P < 0.05).
Conclusion: The activation of VEGF-Notch signaling pathway may be a potential therapeutic target for AA with KB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27516 | DOI Listing |