Using elongated microparticles to enhance tailorable nanoemulsion delivery in excised human skin and volunteers.

J Control Release

Future Industries Institute, University of South Australia, Adelaide, Australia; Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute at the Princess Alexandra Hospital, Brisbane, Australia. Electronic address:

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study demonstrates, for the first time, clinical testing of elongated silica microparticles (EMP) combined with tailorable nanoemulsions (TNE) to enhance topical delivery of hydrophobic drug surrogates. Likewise, this is the first report of 6-carboxyfluorescein (a model molecule for topically delivered hydrophobic drugs) AM1 & DAMP4 (novel short peptide surfactants) used in volunteers. The EMP penetrates through the epidermis and stop at the dermal-epidermal junction (DEJ). TNE are unusually stable and useful because the oil core allows high drug loading levels and the surface properties can be easily controlled. At first, we chose alginate as a crosslinking agent between EMP and TNE. We initially incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into TNE for visualization with microscopy. We compared four different coating approaches to combine EMP and TNE and tested these formulations in freshly excised human skin. The delivery profile characterisation was imaged by dye- free coherent anti-Stoke Raman scattering (CARS) microscopy to detect the core droplet of TNE that was packed with pharmaceutical grade lipid (glycerol) instead of DiI. These data show the EMP penetrating to the DEJ followed by controlled release of the TNE. Freeze-dried formulations with crosslinking resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. Finally, we tested the crosslinked TNE coated EMP formulation in volunteers using multiphoton microscopy (MPM) and fluorescence-lifetime imaging microscopy (FLIM) to document the penetration depth characteristics. These forms of microscopy have limitations in terms of image acquisition speed and imaging area coverage but can detect fluorescent drug delivery through the superficial skin in volunteers. 6-Carboxyfluorescein was selected as the fluorescent drug surrogate for the volunteer study based on the similarity of size, charge and hydrophobicity characteristics to small therapeutic drugs that are difficult to deliver through skin. The imaging data showed a 6-carboxyfluorescein signal deep in volunteer skin supporting the hypothesis that EMP can indeed enhance the delivery of TNE in human skin. There were no adverse events recorded at the time of the study or after the study, supporting the use of 6-carboxyfluorescein as a safe and detectable drug surrogate for topical drug research. In conclusion, dry formulations, with controllable release profiles can be obtained with TNE coated EMP that can effectively enhance hydrophobic payload delivery deep into the human epidermis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050638PMC
http://dx.doi.org/10.1016/j.jconrel.2018.09.012DOI Listing

Publication Analysis

Top Keywords

human skin
12
drug surrogate
12
tne
10
excised human
8
skin volunteers
8
emp
8
hydrophobic drug
8
emp tne
8
release profile
8
tne coated
8

Similar Publications

Cat, dog, and horse allergies: emerging new insights.

Turk J Pediatr

September 2025

Division of Allergy and Asthma, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye.

Animal allergens, particularly those from cats, dogs, and horses, are significant risk factors for the development of allergic diseases in childhood. Managing animal allergies requires allergen avoidance and, when this is not feasible, specific immunotherapy. Patient history remains the cornerstone of diagnosis, providing the foundation for diagnostic algorithms.

View Article and Find Full Text PDF

Purpose: To investigate hand function and eye drop instillation success in adults with and without glaucoma.

Design: Cross-sectional pilot study.

Subjects: Adults aged ≥ 65 years with glaucoma who use eye drops daily and adults aged 65+ without glaucoma who do not regularly use eye drops.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

Tattoos and permanent make-up (PMU) gain increasing popularity among the general population. There are indications that pigments or their fragments may translocate within the body, however knowledge about possible systemic adverse effects related to tattoos is very limited. We investigated the prevalence of systemic chronic health effects including cardiovascular diseases, cancer and liver toxicity and their relationship with the presence and characteristics of tattoos and PMU as part of the LIFE-Adult-study, a population-based cohort study.

View Article and Find Full Text PDF

Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered.

View Article and Find Full Text PDF