Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose.

Bioresour Technol

Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A combined study of crystallinity index (CI), degree of polymerisation (DP) and thermal stability of cellulose was carried out for monitoring the effect of ball-milling. DP and CI are two fundamental quantities that describe the physico-chemical behaviour of cellulose. Milling is a common strategy to reduce cellulose crystallinity. In this work, four different commercially available celluloses were milled at 30, 60 and 120 min, and the changes in DP and CI were monitored using spectroscopic, diffraction and chromatographic techniques. Evolved gas analysis-mass spectrometry (EGA-MS) was also used to evaluate the changes in apparent activation energy (E) of the pyrolysis reaction upon different milling times by using model-free isoconversional methods. The results showed substantial decrease in CI values and moderate changes in DP after two-hours of ball-milling. E were found in the range 110-140 kJ/mol, and were reduced by 10% on average after two hours of ball-milling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.09.029DOI Listing

Publication Analysis

Top Keywords

crystallinity degree
8
thermal stability
8
stability cellulose
8
ball-milling
4
ball-milling crystallinity
4
degree polymerization
4
polymerization thermal
4
cellulose
4
cellulose combined
4
combined study
4

Similar Publications

A Core-Shell Structured Microneedle Patch With Adjustable Release of Kinetically for the Treatment of Melasma.

Adv Healthc Mater

September 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.

Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.

View Article and Find Full Text PDF

Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).

View Article and Find Full Text PDF

The water activity of milk powders is a critical parameter for predicting quality and safety, but some retailers in the supply chain may be limited to measuring moisture content, which can be easier and more affordable. Moisture sorption isotherms relate moisture content to the corresponding water activity. In this study, moisture adsorption and desorption isotherms were determined for nonfat dry milk (NFDM) and milk protein concentrate (MPC-85) powder samples at ambient and elevated temperatures via the modernized dynamic dewpoint isotherm (DDI) method.

View Article and Find Full Text PDF

Effects of Lactobacillus plantarum fermentation on the retrogradation behaviors, physicochemical properties and structure of rice starch.

Carbohydr Polym

November 2025

School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Starch retrogradation critically compromises shelf stability in rice-based products. This study demonstrates Lactobacillus plantarum (LP) fermentation as an effective biological strategy to retard retrogradation in japonica (JRS), indica (IRS), and glutinous (GRS) rice starches. Controlled fermentation (0-48 h) followed by 4 °C storage (0-14 d) induced significant structural and functional modifications.

View Article and Find Full Text PDF

Optimization of malic acid and ultrasound dual modification conditions to reduce starch digestibility of cooked whole rice grains.

Int J Biol Macromol

September 2025

Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong, China. Electronic address:

Rice is a staple food for a large portion of the global population, while it is often associated with a high glycemic index. In this study, rice grains were for the first time dually treated with various concentrations of malic acid and different ultrasound durations to reduce starch digestibility. Results showed that a wide range of digestibility (up to ~30 % difference in the amount of starch digested after 120 min) reached after the treatments.

View Article and Find Full Text PDF