A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal Observational Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to advances in sensor technologies on wearable devices, it is feasible to measure physical activity of an individual continuously over a long period. These devices afford opportunities to understand individual behaviors, which may then provide a basis for tailored behavior interventions. The large volume of data however poses challenges in data management and analysis. We propose a novel quantile coarsening analysis (QCA) of daily physical activity data, with a goal to reduce the volume of data while preserving key information. We applied QCA to a longitudinal study of 79 healthy participants whose step counts were monitored for up to 1 year by a Fitbit device, performed cluster analysis of daily activity, and identified individual activity signature or pattern in terms of the clusters identified. Using 21,393 time series of daily physical activity, we identified eight clusters. Employment and partner status were each associated with 5 of the 8 clusters. Using less than 2% of the original data, QCA provides accurate approximation of the mean physical activity, forms meaningful activity patterns associated with individual characteristics, and is a versatile tool for dimension reduction of densely sampled data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164779PMC
http://dx.doi.org/10.3390/s18093056DOI Listing

Publication Analysis

Top Keywords

physical activity
16
quantile coarsening
8
coarsening analysis
8
activity
8
activity data
8
volume data
8
daily physical
8
activity identified
8
data
7
analysis
4

Similar Publications