Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review.

Artif Intell Med

Computer Vision and Robotics Institute, Dept. of Computer Architecture and Technology, University of Girona, Ed. P-IV, Av. Lluis Santaló s/n, 17003 Girona, Spain. Electronic address:

Published: April 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, deep convolutional neural networks (CNNs) have shown record-shattering performance in a variety of computer vision problems, such as visual object recognition, detection and segmentation. These methods have also been utilised in medical image analysis domain for lesion segmentation, anatomical segmentation and classification. We present an extensive literature review of CNN techniques applied in brain magnetic resonance imaging (MRI) analysis, focusing on the architectures, pre-processing, data-preparation and post-processing strategies available in these works. The aim of this study is three-fold. Our primary goal is to report how different CNN architectures have evolved, discuss state-of-the-art strategies, condense their results obtained using public datasets and examine their pros and cons. Second, this paper is intended to be a detailed reference of the research activity in deep CNN for brain MRI analysis. Finally, we present a perspective on the future of CNNs in which we hint some of the research directions in subsequent years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2018.08.008DOI Listing

Publication Analysis

Top Keywords

deep convolutional
8
convolutional neural
8
neural networks
8
image analysis
8
magnetic resonance
8
resonance imaging
8
mri analysis
8
networks brain
4
brain image
4
analysis
4

Similar Publications

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF

The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process.

View Article and Find Full Text PDF

A Comparative Analysis on the Classification of Pineapple Varieties Using Thermal Imaging Coupled With Transfer Learning.

J Food Sci

September 2025

Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor Darul Ehsan, Malaysia.

Advanced intelligent systems are becoming a significant trend, especially in the classification of tropical fruits due to their unique flavor and taste. As one of the most popular tropical fruits worldwide, pineapple (Ananas comosus) has a great chemical composition and is high in nutritional value. A non-destructive method for the determination of pineapple varieties was developed, which utilized thermal imaging and deep learning techniques.

View Article and Find Full Text PDF

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF