Skull ontogeny of extant caimans: a three-dimensional geometric morphometric approach.

Zoology (Jena)

División Paleontología Vertebrados, Museo de La Plata, Unidades de Investigación Anexo Museo, Av. 60 y 122, 1900, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Published: August 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ontogenetic variation of cranial characters used in crocodylian phylogenetic systematics has never been studied. Furthermore, the relationship between diet and skull morphological transformation during ontogeny has not been properly explored yet. We quantify the inter- and intraspecific skull morphological variation in extant caiman species focusing on those areas relevant to systematics and, also investigate the relation between diet and morphological changes during ontogeny. We applied a three-dimensional approach of geometric morphometrics on post-hatching ontogenetic cranial series of Caiman latirostris and C. yacare. In order to incorporate incomplete material, we additionally tested four different methods of missing landmark estimation and apply the thin-plate spline interpolation. We detected morphological changes between species and during ontogeny (snout and pterygoid flanges increase their proportions and, orbits, temporal fenestrae, skull roof and foramen magnum decrease their relative size) that constitutes part of a general morphological change in the cranial ontogeny of crocodylians. Moreover, the negative allometry of the fenestrae and neurocranium and the positive allometry of the splanchnocranium in both caiman species are the plesiomorphic condition, at least, for tetrapods. Shape changes during growth were found to be related to ontogenetic changes in the diet. Dissimilarities between species seem to be related to different mechanical requirements and different use of the habitat. We found inter- and intraspecific variation in some morphological characters with systematic implications (the contact of nasals with naris, the contact of prefrontals in the midline, and the bones that border the suborbital fenestra and the proportion in which one of them participates) that are not currently considered in phylogenetic analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zool.2018.06.003DOI Listing

Publication Analysis

Top Keywords

skull morphological
8
inter- intraspecific
8
caiman species
8
morphological changes
8
morphological
6
skull
4
skull ontogeny
4
ontogeny extant
4
extant caimans
4
caimans three-dimensional
4

Similar Publications

Purpose: This study aims to evaluate the morphological features of the levator palpebrae superioris muscle (LPS) and the variations in the distribution of the oculomotor nerve in the muscle.

Methods: 100 bilateral orbits from 50 cadavers were included in our study. In our study, the medial, lateral, and middle length, width, and thickness of the LPS were measured from 3 different points and recorded.

View Article and Find Full Text PDF

Objective: The terminal Pleistocene is a crucial stage in the formation and differentiation of modern populations. Recent studies show that the population during this period had significant morphological variability and regional divergence. The objective of this study was to investigate the Yahuai-1 (YH1) from the Yahuai Cave site in southern China to understand human morphological diversity and population dynamics during the terminal Pleistocene in Southern East Asia.

View Article and Find Full Text PDF

Objectives: This study explores cranial morphological variation and population continuity in the Carpathian Basin from the 1st to 13th centuries CE. It focuses on assessing biological differences and similarities across major archaeological periods, with particular emphasis on the Avar, Hungarian Conquest, and Árpádian Age populations.

Materials And Methods: A total of 1,597 adult crania (864 males, 733 females) were analyzed using six neurocranial measurements.

View Article and Find Full Text PDF

Human-like malformations in anole lizards: Potential cases of "hopeful monsters" resembling chameleon morphology.

J Anat

September 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.

Vertebrates exhibit remarkable morphological diversity, with the head representing an exceptionally complex anatomical structure shaped by adaptations to feeding ecology, brain size, and sensory organ specialization. Proper fusion of facial prominences and the coordinated growth of the skull and brain are essential for normal craniofacial development in vertebrates, including humans. Disruptions in these processes, whether due to gene mutations or external factors, can result in craniofacial malformations.

View Article and Find Full Text PDF

Background: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. For stratification purposes, rhabdomyosarcoma is classified into fusion-positive RMS (alveolar rhabdomyosarcoma) and fusion-negative RMS (embryonal or spindle cell/sclerosing, FN-RMS) subtypes according to its fusion status. This study aims to highlight the pathologic and molecular characteristics of a cohort of FN-RMS using a targeted NGS RNA-Seq assay.

View Article and Find Full Text PDF