Sesamolin affects both natural killer cells and cancer cells in order to create an optimal environment for cancer cell sensitization.

Int Immunopharmacol

Department of Biology Education, College of Education, Chungbuk National University, Chungbuk 361-763, Republic of Korea. Electronic address:

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In our previous study, we demonstrated that sesamolin can increase the level of cancer cell susceptibility to natural killer (NK) cell mediated cytolysis when it treats cancer cells. The present study attempted to demonstrate the direct influence of sesamolin on NK cells. To achieve the study goal, an NK cell (NK-92MI) or Raji cell was treated with sesamolin for use in the analysis of the cytolytic activity of NK cells. When NK-92MI cells were treated with sesamolin, the cytolysis activities of NK cells increased depending on the concentration of sesamolin. However, the highest cytolytic activity of NK cells was observed when Raji and NK-92MI cells were treated with sesamolin at 20 μg/mL and 40 μg/mL, respectively. Sesamolin also increased the expression of the degranulation marker, CD107a, on the surface of NK cells and the production of immune-activation cytokine, IFN-γ, from NK cells. The effects of sesamolin on NK cells were reproduced in the naïve NK cells. We found that sesamolin effects are triggered by the result of phosphorylation of the p38, ERK1/2 and JNK pathways in NK cells. Taken together, this study proved that NK cell activity can be increased by the stimulation of sesamolin on NK cells as well as cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2018.08.027DOI Listing

Publication Analysis

Top Keywords

cells
16
cancer cells
12
sesamolin cells
12
treated sesamolin
12
sesamolin
11
natural killer
8
cancer cell
8
cells study
8
cytolytic activity
8
activity cells
8

Similar Publications

[Mechanism and features of blood vessel damage around the gunshot wound canal].

Sud Med Ekspert

January 2025

Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.

Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.

Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.

View Article and Find Full Text PDF

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF