98%
921
2 minutes
20
In the recent years, targeted cancer theranosis, the concomitant therapeutic treatment and selective visualization of cancerous tissue, has become a powerful strategy to improve patient prognosis. In this context, targeted multimodal molecular imaging, the combination of different imaging modalities overcoming their individual limitations, has attracted great attention. Due to their unique properties, advanced nanomaterials have taken center stage in the development of theranostics. In this work, we report a novel Janus nanoplatform by combining an FeO NPs/mesoporous silica core@shell face together with an Au nanoparticle face. Due to its anisotropy, this hybrid nanomaterial enabled the orthogonal site-selective modification of each face permitting the incorporation of a targeting peptide for cancer detection (cRGD) and a fluorescent dye. Due to the intrinsic characteristics of this Janus nanoplatform together with those selectively generated on their surfaces, the resulting hybrid nanocarrier successfully promoted the in vivo tumor-targeted multimodal imaging by magnetic resonance (FeO core), computed tomography (AuNP face), and fluorescent tracking (fluorescent dye loading) in a fibrosarcoma-bearing mouse model. The achieved results endorse these hybrid Janus nanoparticles as a powerful and flexible platform with integrated imaging and carrier functionalities to be equipped with therapeutic features to generate an advanced multifunctional nanocarrier for targeted cancer theranosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b10452 | DOI Listing |
Macromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFFront Microbiol
August 2025
Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Bucharest, Romania.
Introduction: This study evaluates two innovative protective treatments for wooden cultural heritage objects vulnerable to biodeterioration. The first involves polyacrylic resin solutions embedded with silver nanoparticles (AgNPs), while the second uses the siloxane-based coupling agent 3-mercaptopropyltrimethoxysilane (3-MPTMS) to enhance AgNP adhesion to wood surfaces.
Methods: Antimicrobial, anti-biofilm, and anti-metabolic activities were assessed using both qualitative and quantitative assays against biodeteriogenic strains (, and ).
NPJ Biomed Innov
September 2025
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada.
We report a synthetic tetrahedral DNA nanocarrier (TDN) for treating bone defects and methicillin-resistant (MRSA) infection using in vitro studies. We successfully synthesized TDNs and demonstrated their excellent cytocompatibility with blood cells and immune cells. Zoledronic acid-loaded TDN displayed increased efficacy compared to free drugs in regulating bone remodeling, while vancomycin-loaded TDN showed an increased antibacterial effect against MRSA.
View Article and Find Full Text PDFRSC Adv
August 2025
University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering Rua Luís Reis Santos Coimbra 3030-788 Portugal.
This study addresses the growing need for sustainable and multifunctional materials by developing novel polycaprolactone (PCL)/chitosan (CS)/zirconium dioxide (ZrO) nanocomposite films. While PCL and CS offer biocompatibility and biodegradability, their combined use presents limitations for advanced applications requiring specific functional features. The incorporation of ZrO nanoparticles aims to overcome these limitations and create materials with enhanced mechanical, electrical, optical, and antibacterial properties.
View Article and Find Full Text PDF